
A. C. SPARAVIGNA ET AL.
157
doi:10.1016/j.renene.2003.11.003
[10] M. M Farid, A. M. Khudhair, S. A. K. Razack and S.
Al-Hallaj, “A Review on Phase Change Energy Storage
Materials and Applications,” Energy Conversion and
Management, Vol. 45, No. 9-10, 2004, pp. 1597-1615.
doi:10.1016/j.enconman.2003.09.015
[11] S. D. Sharma and K. Sagara, “Latent Heat Storage Mate-
rials and Systems: A Review,” International Journal of
Green Energy, Vol. 2, No. 1, 2005, pp. 1-56.
doi: 10.1081/GE-200051299
[12] T. Nomura, N. Okinaka and T. Akiyama, “Technology of
Latent Heat Storage for High Temperature Application: A
Review,” The Iron and Steel Institute of Japan, Vol. 50,
No. 9, 2010, pp. 1229-1239.
doi:10.2355/isijinternational.50.1229
[13] A. Sharma, V. Tyagi, C. Chen and D. Buddhi, “Review
on Thermal Energy Storage with Phase Change Materials
and Applications,” Renewable and Sustainable Energy
Reviews, Vol. 13, No. 2, 2009, pp. 318-345.
doi:10.1016/j.rser.2007.10.005
[14] M. Akgün, O. Aydın and K. Kaygusuz, “Experimental
Study on Melting/Solidification Characteristics of a Par-
affin as PCM,” Energy Conversion and Management, Vol.
48, No. 2, 2007, pp. 669-678.
doi:10.1016/j.enconman.2006.05.014
[15] A. Sarı and K. Kaygusuz, “Thermal and Heat Transfer
Characteristics in a Latent Heat Storage System Using
Lauric Acid,” Energy Conversion and Management, Vol.
43, No. 18, 2002, pp. 2493-2507.
doi:10.1016/S0196-8904(01)00187-X
[16] H. Mehling, S. Hiebler and E. Günther, “New Method to
Evaluate the Heat Storage Density in Latent Heat Storage
for Arbitrary Temperature Ranges,” Applied Thermal
Engineering, Vol. 30, No. 17-18, 2010, pp. 2652-2657.
doi:10.1016/j.applthermaleng.2010.07.012
[17] F. Agyenim, N. Hewitt, P. Eames and M. Smyth, “A
Review of Materials, Heat Transfer and Phase Change
Problem Formulation for Latent Heat Thermal Energy
Storage Systems (LHTESS),” Renewable and Sustainable
Energy Reviews, Vol. 14, No. 2, 2010, pp. 615-628.
doi:10.1016/j.rser.2009.10.015
[18] V. V. Tyagia, S. C. Kaushika, S. K. Tyagib and T. Aki-
yama, “Development of Phase Change Materials Based
Microencapsulated Technology for Buildings: A Re-
view,” Renewable and Sustainable Energy Reviews, Vol.
15, No. 2, 2011, pp. 1373-1391.
doi:10.1016/j.rser.2010.10.006
[19] L. F. Cabeza, C. Castellon, M. Bogues, M. Medrano, P.
Leppers and O. Zubillage, “Use of Microencapsulated
PCM in Concrete Walls for Energy Savings,” Energy and
Buildings, Vol. 39, No. 2, 2007, pp. 113-119.
doi:10.1016/j.enbuild.2006.03.030
[20] Y. Yamagishi, H. Takeuchi, A. T. Pyatenko and N. Ka-
yukawa, “Characteristics of Microencapsulated PCM
Slurry as a Heat-Transfer Fluid,” AIChE Journal, Vol. 45,
No. 4, 1999, pp. 696-707. doi: 10.1002/aic.690450405
[21] D. Banu, D. Feldman, F. Haghighat, J. Paris and D.
Hawes, “Energy-Storing Wallboard: Flammability
Tests,” Journal of Material in Civil Engineering, Vol. 10,
No. 2, 1998, pp. 98-105.
doi:10.1061/(ASCE)0899-1561(1998)10:2(98)
[22] I. O. Salyer, A. K. Sircar, R. P. Chartoff and D. E. Miller,
“Advanced Phase-Change Materials for Passive Solar
Storage Applications,” Proceedings of the 20th Interso-
ciety Energy Conversion Engineering Conference, War-
rendale, 1995, pp. 699-709.
[23] M. Shapiro, D. Feldman, D. Hawes and D. Banu, “PCM
Thermal Storage in Drywall Using Organic Phase Change
Material,” Passive Solar Journal, Vol. 4, No. 4, 1987, pp.
419-438.
[24] M. W. Babich, R. Benrashid and R. D. Mounts, “DSC
Studies of Energy Storage Materials. Part 3: Thermal and
Flammability Studies,” Thermochimica Acta, Vol. 243,
No. 2, 1994, pp. 193-200.
doi:10.1016/0040-6031(94)85054-2
[25] D. A. Neeper, “Thermal Dynamics of Wallboard with
Latent Heat Storage,” Solar Energy, Vol. 68, No. 5, 2000,
pp. 393-403. doi:10.1016/S0038-092X(00)00012-8
[26] S. Medved and C. Arkar, “Correlation between the Local
Climate and the Free-Cooling Potential of Latent Heat
Storage,” Energy and Buildings, Vol. 40, No. 4, 2008, pp.
429-437. doi:10.1016/j.enbuild.2007.03.011
[27] V. A. A. Raj and R. Velraj, “Review on free Cooling of
Buildings Using Phase Change Materials,” Renewable
and Sustainable Energy Reviews, Vol. 14, No. 9, 2010,
pp. 2819-2829. doi:10.1016/j.rser.2010.07.004
[28] A. Pasupathy, R. Velraj and R. V. Seeniraj, “Phase
Change Material-Based Building Architecture for Ther-
mal Management in Residential and Commercial Estab-
lishments,” Renewable and Sustainable Energy Reviews,
Vol. 12, No. 1, 2008, pp. 39-64.
doi:10.1016/j.rser.2006.05.010
[29] M. G. Davies, “Building Heat Transfer,” John Wiley &
Sons, Inc., New York, 2004.
[30] L. Sertorio, “Thermodynamics Equations of a Black
Planet with Nearest-Neighbour Surface Carnot Interac-
tion,” Nuovo Cimento, Vol. 3, No. 1, 1980, pp. 37-44.
doi: 10.1007/BF02509189
[31] R. S. Berry, F. d’Isep and L. Sertorio, “Behaviour of a
Thermodynamic Model System under Time-Dependent
Periodic Boundary Conditions,” Nuovo Cimento, Vol. 5,
No. 3, pp. 332-358, 1982. doi: 10.1007/BF02509144
[32] ASHRAE, “Handbook and Product Directory 1977 Fun-
damentals,” American society of Heating, Refrigerating
and Air-Conditioning Engineers, Inc., New York, 1980.
[33] M. Jaworski and R. Domanski, “A Novel Design of Heat
Sink with PCM for Electronic Cooling,” 10th Interna-
tional Conference on Thermal Energy Storage, Stockton,
31 May-2 June 2006.
Copyright © 2011 SciRes. EPE