U. KULSHRESHTHA ET AL.
Copyright © 2011 SciRes. JMP
340
u and J. Schwarz, “
. 12,
ngs and FS
D, Vol. 53, No. 12,
y
tion in the Presence
Cone 2008: Rela
Quantization of the Conform

calar Dilaton Field,” In
lations of the DiracBornIn
amiltonian
f the NambuGoto D1
“Hamilt
s of the BornInfeld
ics, Vol. 2, 1950, pp.
w Jersey, 1992.
gs Theory in the
tor
Model
1, No. 3, 1949, pp.
the Light
ournal of
e NelsenOlsen (Bogo
BRST For
s
sics Letters B,
d, “Boundary Condi
Physical Journal C,
[3] C. V. Johnson, “DBrane Primer,” hepth/0007170.
[4] M. Aganagic, J. Park, C. PopescDual
129148.
DBrane Actions,” Nuclear Physics B, Vol. 496, No
1997, pp. 215230. doi:10.1016/S05503213(97)002575
[5] M. A. Zeid and C. M. Hull, “Intrinsic Geometry of
DBranes,” Physics Letters B, Vol. 404, No. 34, 1997,
[18]
pp. 264270. doi:10.1016/S03702693(97)005704
[6] C. Schmidhuber, “DBrane Actions,” Nuclear Physics B,
Vol. 467, No. 12, 1996, pp. 146158.
doi:10.1016/05503213(96)000922
[7] S. P. de Alwis and K. Sato, “DStri
from String Loops,” Physical Review
trings Broken Symmetry Phase,” Physica Scripta, Vol. 75, No.
6, 2007, pp. 795802.
1996, pp. 71877196. doi:10.1103/PhysRevD.53.7187
[8] A. A. Tseytlin, “Self Duality of BornInfeld Action and
Dirichlet ThreeBrane of Type IIB Super String Theory,”
So
Nuclear Physics B, Vol. 469, No. 12, 1996, pp. 5167.
doi:10.1016/05503213(96)001733
[9] U. kulshreshtha and D. S. Kulshreshtha, “Conformall
GaugeFixed Polyakov D1Brane Ac
of a 2Form Gauge Field: The InstantForm and Front
Form Hamiltonian and Path Integral Formulations,”
Physics Letters B, Vol. 555, No. 34, 2003, pp. 255263.
doi:10.1016/S03702693(03)00056X
[10] D. S. Kulshreshtha, “Polyakov D1 Brane Action on the
LightFront,” Invited Talk at the Light
with
tivistic Nuclear and Particle Physics (2008), Mulhouse,
711 July 2008, Published in PoS LC2008: 007, 2008,
hepth/0809.1038.
[11] U. Kulshreshtha and D. S. Kulshreshtha, “Hamiltonian
and Path Integralally
Cone,” Physics Reports, Vol. 301, No. 46, 1998, pp.
299486.
GaugeFixed Polyakov D1 Brane Action in the Presence
of a Scalar Dilation Field,” International Journal of
Theoretical Physics, Vol. 48, No. 4, 2009, pp. 937944.
doi:10.1007/s107730089866z
[12] D. S. Kulshreshtha, “LightFront Quantization of the Pol
yakov D1 Brane Action with a S
Theo
vited Talk at the LightCone 2007: Relativistic Hadronic
and Nuclear Physics (LC2007), Columbus, 1418 May
2007, hepth/0711.1342.
[13] U. Kulshreshtha and D. S. Kulshreshtha, “Hamiltonian
and Path Integral Formu
feldNambuGoto D1 Brane Action with and without a
Dilaton Field under GaugeFixing,” European Physical
Journal C, Vol. 29, No.3, 2003, pp. 453461.
doi:10.1140/epjc/s2003012398
[14] U. Kulshreshtha and D. S. Kulshreshtha, “H
and Path Integral Formulations o
mula
Brane Action with and without a Dilaton Field under
GaugeFixing,” International Journal of Theoretical Phys
ics, Vol. 43, No. 12, 2004, pp. 23552369.
doi:10.1007/s1077300477045
[15] U. Kulshreshtha and D. S. Kulshreshtha,
and Path Integral Formulation
onian
Vol. 128, No. 6, 1983, pp. 411414.
NambuGoto D1 Brane Action with and without a Dila
ton Field under GaugeFixing,” International Journal of
Theoretical Physics, Vol. 44, No. 5, 2005, pp. 587603.
doi:10.1007/s1077300539856
[16] P. A. M. Dirac, “Generalized Hamiltonian Dynamics,”
Canadian Journal of Mathemat
Vol.
doi:10.4153/CJM19500121
[17] M. Henneaux and C. Teitleboim, “Quantization of Gauge
Systems,” Princeton University Press, Ne
P. Senjanovic, “Path Integral Quantization of Field Theo
ries with SecondClass Constraints,” Annals of Physics,
Vol. 100, No. 12, 1976, pp. 227261. Erratum: Annals of
Physics, Vol. 209, No. 1, 1991, p. 248.
[19] U. Kulshreshtha, “Hamiltonian, Path Integral and BRST
Formulations of the ChernSimonsHig
doi:10.1088/00318949/75/6/009
[20] U. Kulshreshtha, “Vector Scwinger Model with a Photon
Mass Term: GaugeInvariant Reformulation, Opera
lutions and Hamiltonian and Path Integral Formula
tions,” Modern Physics Letters A, Vol. 22, No. 39, 2007,
pp. 29933001. doi:10.1142/S0217732307023663
[21] U. Kulshreshtha and D. S. Kulshreshtha, “GaugeIn
variant Reformulation of the Vector Schwinger
a Photon Mass Term and Its Hamiltonian, Path Inte
gral and BRST Formulations,” International Journal of
Modern Physics A, Vol. 22, No. 32, 2007, pp. 61836201.
doi:10.1142/S0217751X07038049
[22] P. A. M. Dirac, “Forms of Relativistic Dynamics,” Re
views of Modern Physics, Vol. 2
392399. doi:10.1103/RevModPhys.21.392
[23] S. J. Brodsky, H. C. Pauli and S. S. Pinsky, “Quantum
Chromodynamics and Other Field Theories on
doi:10.1016/S03701573(97)000896
[24] U. Kulshreshtha, “Hamiltonian and BRST Formulations
of the NelsenOlesen Model,” International J
retical Physics, Vol. 41, No. 2, 2002, pp. 273291.
doi:10.1023/A:1014058806710
[25] U. Kulshreshtha, “LightFront Hamiltonian, Path Integral
and BRST Formulations of th
mol’nyi) Model in the LightCone Gauges,” International
Journal of Theoretical Physics, Vol. 46, No. 10, 2007, pp.
25162530. doi:10.1007/s1077300793675
[26] U. Kulshreshtha, D. S. Kulshreshtha and J. P. Vary,
“LightFront Hamiltonian, Path Integral and
tions of the ChernSimonsHiggs Theory under Ap
propriate GaugeFixing,” Physics Scripta, Vol. 82, No. 5,
2010, p. 055101. doi:10.1088/00318949/82/05/055101
[27] U. Kulshreshtha, D. S. Kulshreshtha and J. P. Vary, “Light
Front Hamiltonian, Path Integral and BRST Formulation
of the ChernSimons Theory under Appropriate Gauge
Fixing,” Journal of Modern Physics, Vol. 1, No. 6, 2010,
pp. 385392. doi:10.4236/jmp.2010.16055
[28] J. Maharana, “Quantization of Nonlinear Sigma Model in
Constrained Hamiltonian Formalism,” Phy
doi:10.1016/03702693(83)909280
[29] M. M. SheikhJabbari and A. Shirza
tions as Dirac Constraints,” European
19, No. 2, 2001, pp. 383390.
doi:10.1007/s100520100590