Int. J. Communications, Network and System Sciences, 2011, 4, 287-296
doi:10.4236/ijcns.2011.45033 Published Online May 2011 (http://www.SciRP.org/journal/ijcns)
Copyright © 2011 SciRes. IJCNS
Protection of Sensitive Messages Based on Quadratic Roots
of Gaussians: Groups with Complex Modulus*
Boris Verkhovsky
Computer Science Department, New Jersey Institute of Technology, University Heights, Newark, USA
E-mail: verb73@gmail.com
Received April 5, 2011; revised May 3, 2011; accepted May 20, 2011
Abstract
This paper considers three algorithms for the extraction of square roots of complex integers {called Gaus-
sians} using arithmetic based on complex modulus p + iq. These algorithms are almost twice as fast as the
analogous algorithms extracting square roots of either real or complex integers in arithmetic based on
modulus p, where p is a real prime. A cryptographic system based on these algorithms is provided in this
paper. A procedure reducing the computational complexity is described as well. Main results are explained in
several numeric illustrations.
Keywords: Complex Modulus; Computational Efficiency; Cryptographic Algorithm; Digital Isotopes;
Multiplicative Control Parameter; Octadic Roots, Quartic Roots, Rabin Algorithm, Reduction
of Complexity, Resolventa, Secure Communication, Square Roots
1. Introduction and Problem Statement
The concept of complex modulus was introduced by C. F.
Gauss [1]. The set of complex integers is an infinite sys-
tem of equidistant points located on parallel straight lines,
such that the infinite plane is decomposable into infi-
nitely many squares. Analogously, every integer that is
divisible by a complex integer m = a + bi forms infini-
tely many squares, with sides equal to 22
ab.
1.1. Complex Moduli
Let’s denote . Associates of

,:aba bi
:,Gpq
are –G, iG and –iG; they are the vertices of a square
where ;

,Gpq
 
0, 1,p q
,q piG

, ,p qqp 
;
.

0, 1iG
To understand the congruencies, let’s consider a sys-
tem of integer Cartesian coordinates. The squares on this
system of coordinates are inclined to the former squares
if neither of integers a, b is equal to zero [1]. Then the
associates of the modulus are rotations of “vec-
tor” on 90 degrees. Let’s consider the plane of
complex numbers and as an example, the complex prime
number [2]. Let the left-most bottom
point of the mesh be the origin of the coordinate system for
Gaussians, and let be the Gaussian
modulus. Inside each square there is a number of Gaus-
sian integers; plus every vertex of each square is also a
Gaussian integer. In order to avoid multiple counting of
the same vertex, we consider that only the left-most bot-
tom vertex of each square belongs to that square [1]. For
more insights and graphics see [2].
,pq
,
,pq
1,

4 :14i
:1 41,4Gi 
 
2
,,mod
This paper is a logical continuation of a recently pub-
lished paper [3], which considered a cryptographic scheme
based on complex integers modulo real semi-prime pq.
The above mentioned paper describes an extractor of
quadratic roots from complex integers called Gaussians.
A slightly different approach is considered in [4]. Several
general ideas for computation of a square root in modular
arithmetic are provided in [5-7].
This paper considers arithmetic based on complex in-
tegers with Gaussian modulus. As demonstrated below,
the extraction of square roots in such arithmetic requires
a smaller number of basic operations. As a result, the
described cryptographic system is almost twice faster
than the analogous systems in [3,4].
Consider quadratic equation
x
ycdpq, (1)
where modulus
:,Gpq is a Gaussian prime; and let
2
:,Npqpq
2
. (2)
*Dedicated to the memory of Samuel A. Verkhovsky.
B. VERKHOVSKY
288
1.2. General Properties
Proposition 1: Gaussian is a prime if and only
if its norm N is a real prime [1].
,pq
Remark 1: Since

,,pq qp , without loss
of generality we assume that, if is prime, then p
is odd and q is even {unless it is stated otherwise}.
,pq
Proposition 2: If norm of
,pq is a prime (2), then
for every
 
,, 14pq N is an integer.
Proof: Let and . Then (2) implies
that
:2 1pk :2qr
r

2
14 1Nkk
 
. Q.E.D. (3)
Proposition 3 {cyclic identity}: If
g
cd,,,1, 0abpq


and G is a prime, then the following identity holds:
 
1
,mod,1,
N
ab pq
0
d
. (4)
Remark 2: More details about identity (4) are provided
in the Appendix in Proposition 3.A.
Proposition 4 {Modular multiplicative inverse}: if
, then

gcd, ,,1,0abpq


 
12
,,mo
N
ab abG

. (5)
Remark 3: Yet, more computationally-efficient is to
solve an appropriate Diophantine equation. However,
this is beyond the scope of this paper.
Definition 1: Gaussian
,
x
y is called a quadratic
root of modulo G if
,cd
,
x
y and
satisfy
Equation (1); we denote it as
,cd
 
,: ,mod
x
ycdG. (6)
2. Quadratic Root Extraction Where

5mod8N
Proposition 5: If
,pq is prime and
5mod8N,
then

:14
moq
mN is odd.
Proof: Notice that d 42
, otherwise (3) implies
that . Q.E.D.
1mod8N
2.1. Quadratic and Quartic Roots of
1, 0
Modulo

,pq
Consider a quadratic root
,uw of

mo1, 0d,pq:
 
,: 1,0mod,uw pq
, Thi
Go
(7)
Since the last equation does not
lu
.
Then
,uw s
equation holds if either w = 0 and 2
ur if
u = 0 and

 
222
,21,0moduw uwpq .
1mod;
21modGw  .
have a real integer so-
tion for w, it implies that
 
,0, modp qG

,1,01uw  
. (8)
Hence, if a root
,
x
y is known, then another root of
,d is
c
,y
There ar
, d.uw xG
mo
oots: e Qu
1, 0,
artic rfour quartic roots of
each satisfying
41,0
k
q:
(1,0);qq q

123 4
(1,0);0,1;0,1 ;q
 (9)
where

22
3,4 22 1
mod; 1,0mod.qq GqqG
.2. Quadratic Root Extractor (QRE-1)
Step 1.1: Compute
2

22
:; Nmpq :14; 38NzN (10)
Step 2.1: if N is not a prime, then QRE-1 algor
no
ithm is
t applicable,
na ;
Remark 4:
1,1, 0modpq G; (11)
Step 3.1: Compute
(12)
Step 4.1: if

mod
m
cd G;
:,E
0, 1E
,
due (GQNR
then
dr
5.1: if
,cd
its squ
is Gaussian qua-
atic non-resi}, i.e. are root does not
exist;
Step
1, 0E, then
 


38
m
N
x
,: ,odyc G; (13)
Step 6.1: if
d
1, 0E , then


1
:0,1 mod;mod REGGR
 ; (14)
 
,:,mod
z
x
yRcd G ;
nd
(15)
Step 7.1 {2 square root}:
,:1,,tvpqxymodG
(11). (16)
.3. Validation of Algorithm
Proposition 6: Suppose
2
a)
,pq is a prime and

2mod4q; (17)
b)
 

14
38; md :,o
N
Ecd GzN
 ; (18)
c)
 
1 if 1,mod0 or 1,0REEG
; (19)
then
 
,,mo
z
cd RcdG.d (20)
Copyright © 2011 SciRes. IJCNS
B. VERKHOVSKY289
Proof: First of all, (19) implies that
(21)
Yet,

2mod1, 0ERG .






 
34 14
222
,, ,
,mod
NN
R cdcdR cdER
cd G

.(22)
Therefore, (21) and (22) imply equation
(23)
which itself implies that (20) is correct. Q.E.
has a quadratic root
odulo Gaussian prime ly if
,cd
 
,,modcd RcdG
22
z,
D.
3. Criterion of Gaussian Quadratic
Residuosity Where

5mod8N
Proposition 7: Gaussian

,cd

,pq onm



14
,md1,0
N
cd G
 . (24) o
Example 1: Consider
,8317,pq
es.
91,6; Npq
which is a prime; hence are Gaussian prim
C

91, 6
ompute
 
: 1mN
Let
 
,81,71cd . S
4/2079; :
ince
38 1040zN ;
81,71 m
 
96,85
 
1,0mod 91,6 
(11), therefore,
 
0,1 (25)


,81,71 81,71
57,75mod91,6.
xy  

Verification: Indeed,
. (26)
4. Numeric Illustration
N = 109; m = 27; z = 14.
In Table 1 are the quartic roots of unity
1040

57,75 m

2od 91,681,71
Consider p = 10, q = 3. Then
m

,cd k
(9), i.e.,
q
 

1
:1,012,71,0;3,90,1 ;q q 


2 3
4
;
10,20,1mod,
R q
qpq
 
.
Step-by-step process of extraction of the square roo
and criteria of quadratic residuosity are illustrated for
se
ts
veral values of
,cd .
5. Quadratic RExoot traction (QRE-2)
5.1. Basic Properties
and
Where

9mod 16N
Proposit ion 8: if

3pmod8
0mod4
q
, then
able 1. Quadratic root extraction and verification; T
mod 8 = 5 . N
,cd (3, 8)(4, 8) (6, 7) (8, 2) (9, 2)(10, 5)

,m
cd (1, 0) (10, 2) (1, 0) (1, 0) (3, 9)(1, 0)

,
z
cd (9, 2) QNR (5, 3) (11, 4) QNR (2, 2)

,z
cd R(9, 2) na (7, 2) (7, 1) na (2, 2)

2
,
x
y (3, 8) *** (6, 7) (8, 2) *** (10, 5)
:1mN
8
is odd and
716N is an integer.
Proof Si = + 3 and he : nce p 8w q =4r, terefor
22
16 439Nwwr
  (2). Hence

16 7N
.
If we assume that m is even; then

7 7) 1612Nm. (2
Thus, if 2m is integer, then
716N is not (27).
This contradiction proves Proposition 8
Proposition 9 {criterion of Gaussian
os
.
quadratic residu-
ity}:
Let

18
:, mod
N
Ecd G
; (28)
and
gcd, ,1cdG
.
Then
,cd
if
has a quadratic root
e G modulo Gaussian
prim
,0;0:1 ,11;iE

; {see the algorithm below}.
(29)
Proposition 10: Suppose
a) p is odd and
0mod4q; (30)
b)
716zN ; (31)
satisfies the fc) Resolventa Rollowing conditions:
 
 

3
1,0mod if 1,0; (32)GE
0,1mod if 1,0; (RGE
 
33)
mod if 0,1; (34)EGE

Then
 
,,mo
z
cd RcdG.d (35)
in (32)-(34) Proof: Notice that 1modRE G
.
s that If (35) is correct, then it implie
d (36)
 
,,cd Rcd
22mo
zG.
On the other hand,
 


odG; (37)
218
22
,,,m
zN
cd Rcd cdR


th ply that erefore (28), (32)-(34) im
Copyright © 2011 SciRes. IJCNS
B. VERKHOVSKY
290
ords, it confirms as-
5.

2mod ,1ERp q. (38)
Hence (36) is correct. In other w
sumption (35). Q.E.D.
2. Octadic Roots of
1,0 Modulo

,pq
onsider roots of 8th poCwer (called the octadic roots) of
roots: 8 unity; there are eight suchfor k = 1, ···,
 
 
81,23,4
5,6 7,8
:1,0: 1,0;:0,1;
:0,1;:0,1
k
eee
ee
 
 (39)
Then
2
e
e
. (40)
Therefore, the resolventa R must satisfy the following
equations for k = 1, 2, ···, 8:
. (41)
if3,4
an
(43)
5.3. Computation of

 
22
213,4
22
5,637,84
1, 0;1, 0;
0,1;0,1
eee
eee
 
 

1
mod1,0 or mod
kk
ReGR eG

Thus, 1
: if 1,2
kk
Re ek
 ;
132
:
kkkkk
Reeeeek ; (42)
d


17422 0,1 if
:
0,1 if 7,8
k
kk kkkkkk
e
R eeeeeeeek


5,6
k.

0,1i Modulo
,pq
If is fixed and , then this root
Direct computation: Since

,pq mod 169N
advance.
must be pre-computed in

cos π2sinπ2ii
cosπ4sinπi41,122,
it is necessary to compute square root of two and multi-
plicative inverse of two modulo G.
5.4. Multiplicative Inverse of 2 Modulo
,pq
f p is odd and q is even, then I




1
212,2mod,pq pq
 ;
if q is odd and p is even, then




1
212,2mod,qp pq
 .
Otherwise the modular inverse of 2 does not exist.
then Example 2: Let G = (8, 3);
1
22,4mod8,3
 and


25,1mod8,3.
Hence
 

1, 15, 12,42,3mod8,3i

[8
deed,
 
].
In
8
2,31,0mod8,3
.
Indirect computation: In general, observe that if
square root of 2 does notnd for a Gaussian exist a
,ab
houality lds ineq



,mod1,;0,1ab G
18N
: 0F
 , (44)
then


18
,mod or
N
abG ii
. (45)
Although in this case we do not directly compute

0,1mod G, it is obvious that
if
2mod 0,1FG (44), then
 
0,1 modiFG ; (46)
otherwise

0, 10,
 
0, 11modiFG . (47)
for Quadratic Root Extraction
Step 1.2:
5.5. Algorithm

22
:; :18; 716mNNp Nqz  (48)
Step 2.2: if N is not a prime, then the QRE-2 algo-
rit plicable;
Step 3.2: Find a Gaussian for which
hm is not ap

,ab,


:, mod1,0;0,1Fab G; (49)
Step 4.2: if
m
,
20,1F

m:oRF iG then d;
if
20,1F
, then
m:0 odRFiG
,1;
(
Step 6.2: if
Step 5.2: Compute

:, mod
m
Ecd G; 50)
 
1, 0;0,1E
 (22), then square
root of
,cd does not exist;
E = (1,0), then

,: ,mod
z
Step 7.2: if
x
ycdG;
goto Step 10.2;
Step 8.2: if
1, 0E ,
then
 
,: mo0d,1
z
,
x
yc G; goto Step 10.2; d
Step 9.2: if
0,1E, then

,: ,

0,1 modR
z
x
ycdG;

 goto Step 10.2; (51)
else
(52)
Step 10.2 {2nd square root}:

,: modxy G;

,z
cd R

,:1,,modtvpq xyG . (53)
Copyright © 2011 SciRes. IJCNS
B. VERKHOVSKY
Copyright © 2011 SciRes. IJCNS
291
6. Second Numeric Illustration
C= 73, i.e.,
41,0mod, 1,2,3,4.
j
qGj (56)
onsider
 
,8,3pq, then N Definition 4: is a octadic root of if
k
e
1, 0

739mod16; 9; 5;mz (54)
81,0mod, 1,2,,8.
k
eGk (57)
Octadic roots of
1, 0: Definition 5: l
s
is a sedonic root of if
1, 0

2
110,51,0;e
16 1,0mod, 1,2,,16.
l
sGl (58)

2
10,51,0mod8,3e
;
7.2. Resolventa of Quadratic Root Extractor

2
3
8,2; e
 
10, 58,20,1;
Proposition 12: Suppose
 
2
4
3,710,5; 3,70,1e
;
a)

7mod16 and 0mod8pq
, (59)
 
2
5
2,38,2; 2,30,1e ;
b)

22
:; 1532; :116Lc dzmNN (60)
 
2
6
9,28,2; 9,20,1e; c) Let ; and resolventa R satis-
fies the following conditions:
 
:, mod,
m
Ecd pq
 
2
7
5,13,7; 5,10,1e;

1
:mod if
ii
Ruu GEu
;
i
(61)
 
2
8
6,63,7; 6,60,1e.
The following nine values of

13
:mod if
j;
j
j
Rqq GEq
  (62)
,cd
rithm.
in Table 2 illus-
trate various cases of QRE-2 algo
7. Quadratic Root Extraction (QRE-3)
.1. Basic Property and Roots of
Where

17mod 32N

17
:mod if
kkk
Ree GEe
  ; (63)

115
:mod if
ll
Rs s GEs
  ;
l
(64)
then
 
,,mo
z
cd RcdG
d. (65)
1, 0 7
Proposition 11: Anroved th
7 mod8
Proof: Let
alogously it can be pat if
and , then

,, ,:m
z
od
x
ycdRcdG . (66)
16p

0modq
15 3
2
N
is integer and

6:11mN is odd.
; then
i.e.,
Therefore
Proof: Let 16 7pk and 8qr

 
15 1622
,,
N
cdRcd ERG
mod. (67)

32872 49Nkk

,


32 15N.

If i
Eu
, then
Notice that 15 322 . On the other hand,
if m is even, en
1Nm
th

12m is not an inte
im
ger, which

222
1, 0mod
i
ERE uG
; (68)
15 32N
plies that is noteger. Q.E
Definition q ua re r

1, 0 if
an int.D.
2: is a sot of
i
u oif
j
Eq
, then
 
21,0mod, 1,2
ii

244
1, 0mod
j
ER E qG
; (69)
.uG (55)
Definition 3: is ic root of

1, 0 if if k
Ee
, then
a quart
j
q
Quadoot extractor where
9mod 16N. Table 2.ratic r

,cd (1, 1) (3, 1) (5, 1) (5, 5) (7, 1) (8, 5) (10, 3) (3, 4) (4, 3)

,m
cd (2, 3) (0, 1) ) (0, 1(0, 1)(1, 0) (0, 1) (9, 2) (8, 2) (1, 0)

,
z
cd na
((8, 1) 8, 5) (3, 6) (5, 7) (1, 2) na
(3, 1) (9, 19)

,z
cd Rna (4, 5) (9, 4) (4, 1) (1, 2) (5, 4) na (2, 2) (7, 6)

2
,
x
y na (3, 1) (3, 4) (4, 3) (5, 1) (5, 5) na (8, 5) (10, 3)
58
,,Ee eNB1: If , then QRE-2 algorithm is not applicable, since the square roots of do not exist.
58
,,ee
B. VERKHOVSKY
292

1, 0
;
288 mod
k
RE eGE (
if , the
(
.3onic Roots of
70)
l
Esn
1, 0

21616 mo
l
ER Es
dG. 71)
7. Sed
1, 0 Modulo G
ity wo square rootsUn 0 has t

1,


1, 0and1, 0;


0,1; 0,fouroots
ctadi
quartic r
c roots
 
1,0; 1,0;
 
1; eight
o
 

5678
; 0,1;,,,eeee1,0;1,0; 0,1
and sixteen sedonic roots
 
5678910 1516
1 ,,,,es s,
1, 0;1, 0;0,1;0,,,,,,eeess
where
 
 
5,6 0,1 ,e
7,8
13,14,15,16
0,1 and
0,1.
e
s
 
  (72)
d Numeric Illustration
Consider N = 113;
7. Then
9,10,11,12 0,1 ,s
7.4. Thir

,8,pq 

:1167;

mN :1zN
w

5324.
In Table 3 belo
; 1,014, 1
 
0,18,6 ;
 

0, 1(7,7)mod8, 7 ;

6,5 ; 0,1

0, 19,4;

0,13,1 ;
 
0 mo
,112, 2d8,7 ;




1
0,5;12, 2;10, 2;5, 2mod8,
; (73)
0, 1 
7





0, 1
5, 4;3,3;5,3;10,3mod8, 7

 
. (74)
In (74) there are four sedonic roots of (1,0) that
be pre-computed on the design stage of the QRE-3 algo-
rithm. Although this is a non-deterministic process, each
of these roots must be computed only once prior
thctose roots crresp
must
to using
e extrar. Theoond to
 
mod
, 1,0
m
gh G,
w = 7
16
:E
here m;
,8,pqG 7
 and Gaussians
 
6 4. ,: ;10,1;11gh ,3 ,3;5,
The remaining four sedonic roots li
equivalent to negative values of roots in (7
sted in (73) are
4):


10,55, 4;12,23,3;1,2
5,3;5,21
0,3
0
 
 .
Step 1.3 {System design}: Every user (Alice, Bob,)
selects a pair of Gaussian primes and
8. Cryptographic Algorithm

,pq
rs

, as
his private keys, and computher/es
,qrs
22
q
,
:,np
Np
es
as
m,
Step 2.3 {Generalized Chinese remainder Theorem
m
.
her/his public key; she/he pre-comput
z and R;
odulo composite Gaussian n}: Each user pre-computes
his/her parameters of CRT:
 
11
:,mod,; :,m
 
od,
M
pqrsWrs

75)
Step 3
pq (
.3 {Encryption by sender (Alice)}: Alice repre-
sents the plaintext as an array of Gaussians and inserts
digital isotopes into every Gaussian
,ab [3];
Step 4.3: Using Bob’s public keye computes ci-
phertext
roots of C mod
n, sh

2
:,modCab n; (76)
and transmits C to receiver (Bob) via open channels of a
communication network;
Step 5.3 {Decryption by receiver (Bob)}: He com-
putes square
,pq and
mod ,rs ,
where
,pq and
,rs
he CRT
are Bob’s p
d his pre-com
rivate keys;
Step 6.Using t an
Table 3. Binary tree of sedonic roots of
3: puted M and
W (75), Bob computes all quadratic roots of ciphertext C;
Step 7.3: Bob recovers the initial plaintext {by select-
1, 0 where modulus
8, 7G.

,gh (6, 3) * (10, 1) * * (11, 3) * (5, 4) *

16 1, 0E (5, 4) (10, 5) (3, 3) (12, 2) * (5, 3) (10, 2) (10, 3) (5, 2)

281, 0E * (6, 5) (9, 4) * * * (3, 1) (12, 2) *

441,0E * * (7, 7) * * * (8, 6) * *

81, 0E * * * * (1, 0) * * * *
*
* * * (1, 0) * * * *
16
E
NB2: For the sake of brevity, only 1/2 of all roots are listed in every row of Table 3; all remaining roots are listed in the rows below. For instance,
    
81,06,5;9,4;3,1;12,2; and 7,7;8,6; and 1,0; and 1,0.
Copyright © 2011 SciRes. IJCNS
B. VERKHOVSKY293
Table 4. Residuespplicaare rooxtractornd exams of coding N
N mod 32 59 13
, able squt es aplerrespon.
17 21 25 29
QRE QR E-2 QRE-1 Q E-1 QRE-2 QREE-1 QR RE-3 QR-1
N1260773 692969 432589 386641 612373 525913 906557
5, 496)
(113, 498) (212, 805) (258, 605) (37 (522, 583) (157, 708) (421, 854)
N2
750077
(35130) (16,9) (274) (469) (179) (485) (116)

,pq
812101 249257 360781 676337 159157 405529

,pq , 8 495, 534, 674, 35, 63, 86
ing the quratic rootat has sotope
This algorithm is a gn cryp
graphic algothm [h eme sq
algorithmr encrypecryf real
modulo semi-prime , where are primes.
. Reduction of Computational Complexity
ad of C th
eneralizatio
digital i
of the Rabin
s [9]}.
to-
ri10], whicploys thuare root
fotion and d
npq
ption o
p and q integers
9
In Step 3.1 (12) and Step 4.1 (13), two exponentiations
are performed to compute
,cd to the powers m an d z
respectively; these operations are the most time-con-
suming.
However, observeere is a simple linear rela- that th
tionship between m and z:


21 154zm N . (77)
This implies that it is sufficient to execute only one
exponentiation. Indeed, we initially compute

1
1:, mod
z
A
cd G
; {one exponentiation}; (78)
then


1
21
2
2mod:,
z
AA cdG
 ;
{one
nally
squaring}; (79)
after that


32
:,,
m
AA cdcd 
; {one multiplication}; (80)
and fi

41
:,,
z
AA cdcd 
; {one multiplica-
tion}.
icability of QRE Algorithms
Consider , wh
o integer squares. For such N
his paper
tion of
(81)
10. Appl
:mod 32AN
be represented as a sum of tw
A
ere N are primes, which can
the residues are equal
21,25 and29
Table 4 above indicates which algorithm is applicable
r each value of residue A.
:1,5,9, 13, 17,.
fo
Therefore, the three algorithms provided in t
over all cases of prime moduli with the excepc
od32N
case can still be cov
prim
1m . Yet,
ered
most moduli latter
if we coner QR rithms,
of the
sid
in the
E algo
where the es
od 64;
33Nm
128N;
the als de-
65 mod
ageneralnd in
d
, for integer 5t gorithm
es wherescribeabove can be generalized for the cas
 
t,
1
mod2
t
21N (82)
en component
and the ev in the corresponding modulus
,pq is divisible by 1
2t
.
11. Conclusion and Acknowledgements
Th
d and
y ncryption/ecrtion protocol based
I appreciate S. Medicherla, S. Sadi
n
onynd typesetter for their sugges-
-
ree algorithms which extract square roots of Gaussians
in arithmetic, based on Gaussian modulo reduction, are
considere analyzed in this paper. Several numeric
illustrations provide further explanation of these algo-
rithms. A public keedyp
on this arithmetic is described in the paper. This crypto-
graphic protocol is almost twice as fast as the analogous
protocols published by the author of this paper in [3,4].
k and B. Saraswat
for assistance in numeric illustrations and my gratitude to
J. Joes, A. Koval, M. Linderman, R. Rubino and
mous reviewers athean
tions that improved this paper.
12. References
[1] C. F. Gauss, “Theoria Residuorum Biquadraticorum,”
2nd Edition, Chelsea, New York, 1965, pp. 534-586.
[2] M. Kirsch, “Tutorial on Gaussian Arithmetic Based on
Complex Modulus,” 2008.
http://wlym.com/~animations/ceres/index.html
[3] B. Verkhovsky, “Information Protection Based on Ex-
traction of Square Roots of Gaussian Integers,” Interna
tional Journal of Communications, Network and System
Sciences, Vol. 4, No. 3, 2011, pp. 133-138.
doi:10.4236/ijcns.2011.43016
[4] B. Verkhovsky and A. Koval, “Cryptosystem Based on
Extraction of Square Roots o
Latifi, Ed., Proceedings of 5
f Complex Integers,” In: S.
th International Conference
: New Generations, Las Vegas, on Information Technology
Copyright © 2011 SciRes. IJCNS
B. VERKHOVSKY
294
7-9 April 2008, pp. 1190-1191.
A,
rs: A com-
001.
ariables and Applications,” 3rd Edition, McGraw
n In-
[5] E. Bach and J. Shallit, “Efficient Algorithm,” Algorithmic
Number Theory, Vol. 1, MIT Press, Cambridge, M
Hil
1996.
[6] R. Crandall and C. Pomerance, “Prime Numbe
putational Perspective,” Springer, New York, 2
[7] R. Schoof, “Elliptic Curves over Finite Fields and the
Computation of Square Roots Mod p,” Mathematics of
Computation, Vol. 44, No. 170, 1985, pp. 483-494.
[8] R. V. Churchill, J. W. Brown and R. F. Verhey, “Com-
plex V
l, New York, 1976.
[9] B. Verkhovsky, “Cubic Root Extractors of Gaussia
tegers and Their Application in Fast Encryption for
Time-Constrained Secure Communication,” International
Journal of Communications, Network and System Sci-
ences, Vol. 4, No. 4, 2011, pp. 197-204.
doi:10.4236/ijcns.2011.44024
[10] M. Rabin, “Digitized Signatures and Public-Key Func-
tions as Intractable as Factorization,” MIT/LCS Technical
Report, TR-212, 1979.
Copyright © 2011 SciRes. IJCNS
B. VERKHOVSKY295
Appendix
A1. Classification of Roots of
1,0 Modulo

,pq
There are various types of unary roots:
Definitions and notations:
 

11
:1,0mod, ,Spq 
112
ss; (A.1)
where
 
11
:1,0mod(,)Ppq 
1
p (A.2)
is the set of principal square roots of (1,0) of the first
level. Then



21
:mod,,
k
Ss pqk1,2; (A.3)
where

2112
:mod,;
k
Ppp pqk  1,2; (A.4)
is the set of principal square roots of (1,0) of the second
level.
In general,


1,
:mod
iik
Ss p

,q; (A.5)
where


1,
:mod,
iik
Pp pq

(A.6)
is the set of principal square roots of (1,0) of the i-th
level.
A2. Criterion of Quadratic Residuosity and
General Algorithm
Proposition 1.A: Let .
1
mod 221
kk
N

If and only if


1
12
1
:, mod
k
k
N
Ecd GS
, (A.7)
then has a square root. In this case
,cd
1
:moRE
 dG; (A.8)
and
 

1
212
mo,d,
kk
N
xy RcGd

. (A.9)
A3. Quadratic Extractor Modulo
,1n
Proposition 2.A: Let
,1Nn be a prime;
mod41, but mod81.NN
(A.10)
If the norm of is co-prime with N, then square
root
,cd
,
x
y of
is equal
,cd
 

248
,,mod
n
xyRcdn
 
where

21
/4
,mod,
n
Rcdn

1

 . (A.12)
Proof: First of all, if 21Nn
is a prime integer, then
n is even. Therefore (A.10) implies that 24n and
248n are integers. Then (A.11) and (A.12) imply
that
  
2
24
2
,,,,mod
n
xyR cdcdcdn,1.

1
(A.13)
Since the cyclic identity (4) implies that
 
2
,1,0mod,
n
cd n
, then potentially
 

24n
,mod,11,0;0,1;0,1.cdn 
(A.14)
Therefore,

 

 
2
2
2
2
4
4
4
4
1,0 if ,1,0;
0,1 if ,1,0;
0,1 if ,0,1;
0,10,1 if ,0,1.
n
n
n
n
cd
cd
Rcd
cd




(A.15)
Since
 
0,11,122 mod,1n
{see Subsec-
tions 5.3}, then R does not exist if 2 does not exist
[1,6]. Therefore
,cd is the Gaussian QNR [3]. For
more details see (32)-(34), (A.11), (A.12), Subsection 5.4
and eight examples in Table A1.
Remark A1: Here

1, 9and10, 0
are quartic
roots of
1, 0 modulo
10, 1. Indeed,
od 10,1;
310,,1mq0 0
od 10,1;
 
41,91mq
0,

(9)
32
mod10,1;qq
 
42
10,9.qq
2
,0

2
9
210 1,0
 
21,1, 0
A4. Special Cyclic Identity
Proposition 3.A: If

:,Npq is prime, then
 
1
,1,0mod,
N
qp pq
. (A.16)
Remark A2: Although

,,pq qp, identity (A.16)
holds because
,pq and
,qp are co-prime. Indeed,
assumption that

w q


,, ,mod,up pqpq, where
both u and w are integers, implies that

and mod,.upqNwqpNpq 
(A.17)
However, (A.17) is impossible since the inverse of N
odulo
,1; (A.11) m
,pq does not exit. s
Copyright © 2011 SciRes. IJCNS
B. VERKHOVSKY
Copyright © 2011 SciRes. IJCNS
296
Table A1. {Quadratic root extraction where mod 41N
and mod 81N
}:
,
n
;

2
:22mn5;
:12zm+.

,cd (2,0) (3,2) (4,8) (6,7) (7,4) (9,2) (9,9) (10,1)


2
/2
,n
cd (0, 1) (1, 0) (1, 0) (1, 0) (1, 0) (0, 1) (0, 1) (1, 0)

,z
cd GQNR (9, 4) (6, 3) (6, 9) (5, 8) GQNR GQNR (9, 0)
R na
±(10, 0) (1, 0) ±(1, 9) ±(10, 0) na
na
±(1, 9)

,,
z
xy cd
R
na ±(6, 8) ±(6, 3) ±(1, 5) ±(2, 4) na na ±(10, 8)

2
,
x
y *** (3, 2) (4, 8) (6, 7) (7, 4) *** *** (10, 1)
i.e., 1;
x
ynxy r
 .
Example 1.A: , although
 
28
4,10mod5,21, 0

Hence
gcd4,10,5, 2291



.

12; 12xnrynr . (A.22)
Corollary 1A: If


gcd,,,1, 0stpq


, then Therefore, (A.20) and (A.22) imply
  
1
,, 1,0mod,
N
s
tqp pq

 (A.18)

 

 

11
1
,,1,1 1,1
,1,1
1,0 mod,.Q.E.D.
rn rnnrnr
rn nrnrnr
nr

1
2
 






Proposition 4.A: If n and r in modulus
,nr
have
different parities, then multiplicative inverse of
exists and equals
 
, modulo ,rnn r
(A.23)

 

1
1
,
1,1 2mod,.
rn
nr nrnrnr
 

Example 2.A: Let n = 10, r = 3. Then
.
 
11
3,1074,72,14,78,3
 
(A.19)
Indeed,

3,108,31, 0mod10,3

.
Proof: First of all,
,nrCorollary 2A: If n and r in modulus
 
,1,1mod,rnn rnr . (A.20) have dif-
ferent parities and there exists multiplicative inverse of
,ab, then multiplicative inverse of
,,mod,ab nrrn also exists.
Now let’s find integers x and y such that
 

1,1,1, 01,mod,
x
ynrn r (A.21)