A Parallel Derivation to the Maxwell-Garnett Formula for the Magnetic Permeability of Mixed Materials
Copyright © 2011 SciRes. WJCMP
58
where f = nV is the volume ratio of the embedded parti-
cles within the mixture (0 ≤ f ≤ 1). In the more general
situations where the host is no longer vacuum but of the
permeability μh, then the more general mixing formula of
permeabilities becomes:
3252
sh
eff hh
hs
ff
h
(21)
As with Bruggeman’s approach for dielectrics [4], the
derived magnetic permeability formula can be genera-
lized to the multi-component form:
00
00
25 25
eff i
i
i
eff i
f
(22)
where fi and μi denote the volume ratios and permeabili-
ties of the involved different inclusions, respectively. Or,
11
25 2
reff ri
i
i
reff ri
f
5
(23)
Although the actual mixing procedures can vary
widely such that substantial deviations may result be-
tween the theoretical and measured values, (23) should
still serve as a valuable guide when designing magnetic
materials or composites.
5. Summary and Conclusions
An effective mixed medium approximation of perme-
abilities in the infinite-wavelength limit is derived from
the model describing a host material containing a collec-
tion of spherical homogeneous inclusions. The derivation
parallels that which had previously led to the famous
Maxwell Garnett formula for dielectric mixtures. It is
believed that such approximate magnetic mixing formula
should find a great many applications in all frequency
spectra of the general electromagnetic fields.
REFERENCES
[1] W. Lamb, D. M. Wood and N. W. Ashcroft, “Long-
Wavelength Electromagnetic Propagation in Heteroge-
neous Media,” Physical Review B, Vol. 21, No. 6, March
1980, pp. 2248-2266.
doi:10.1103/PhysRevB.21.2248
[2] J. C. Maxwell Garnett, “Colours in Metal Glasses and in
Metallic Films,” Philosophical Transactions of the Royal
Society of London. Series A, Containing Papers of a
Mathematical or Physical Character, Vol. 203, 1904, pp.
385-420. doi:10.1098/rsta.1904.0024
[3] Ping Sheng and Mireille Gadenne, “Effective Magnetic
Permeability of Granular Ferromagnetic Metals,” Journal
of Physics: Condensed Matter, Vol. 4, No. 48, 1992, pp.
9735-9740. doi:10.1088/0953-8984/4/48/025
[4] D. A. G. Bruggeman, “Berechnung verschiedener physi-
kalischer Konstanten von heterogenen Substanzen. I. Di-
elektrizitätskonstanten und Leitfähigkeiten der Mischkör-
per aus isotropen Substanzen,” Annalen der Physik, Vol.
416, No. 7, 1935, pp. 636-664.
doi:10.1002/andp.19354160802
[5] J. Jamnik, J. R. Kalnin, E. A. Kotomin and J. Maier,
“Generalised Maxwell-Garnett Equation: Application to
Electrical and Chemical Transport,” Physical Chemistry
Chemical Physics, Vol. 8, No. 11, 2006, pp. 1310-1314.
doi:10.1039/b514448p
[6] J. I. Gittleman, B. Abeles, “Comparison of the Effective
Medium and the Maxwell-Garnett Predictions for the Di-
electric Constants of Granular Metals,” Physical Review
B, Vol. 15, No. 6, March 1977, pp. 3273-3275.
doi:10.1103/PhysRevB.15.3273
[7] Cambridge Sequential Total Energy Package (CASTEP)
and DMol3, Administered by Accelrys Inc.
[8] D. K. Cheng, “Field and Wave Electromagnetics,” Se-
cond Edition, Addison-Wesley Pub. Co., Reading, 1989.
[9] E. M. Purcell, “Electricity and Magnetism,” Second Edi-
tion, Education Development Center, Inc., Massachusetts,
1985.
[10] H. A. Lorentz, “Ueber die Beziehung zwischen der
Fortpflanzungsgeschwindigkeit des Lichtes und der Kör-
perdichte,” Annalen der Physik, Vol. 245, No. 4, 1880, pp.
641-665.
[11] L. Lorenz, “Ueber die Refractionsconstante,” Annalen der
Physik, Vol. 247, No. 9, 1880, pp. 70-103.
[12] P. Lorrain and D. R. Corson, “Electromagnetic Fields and
Waves,” Second Edition, W. H. Freeman & Co Ltd, San
Francisco, 1970.