A. E. ABOUELREGAL

Copyright © 2011 SciRes. AM

624

displacement and stress decrease.

2) The increases of the phase-lag of gradient of tem-

perature t

decrease the components of temperature,

displacement and stress distributions.

3) We found that, the parameters and

q

tt

have

significant effects on all the fields.

4) The phenomenon of finite speeds of propagation is

manifested in all these figures.

The comparison of different theories of thermoelastic-

ity, i.e. Lord and Shulman theory and Chandrasekharaiah

and Tzou model is carried out.

7. References

[1] M. Biot, “Thermoelasticity and Irreversible Thermody-

Namics,” Journal of Applied Physics, Vol. 27, No. 3, 1956,

pp. 240-253. doi:10.1063/1.1722351

[2] H. Lord and Y. Shulman, “A Generalized Dynamical

Theory of Thermoelasticity,” Journal of the Mechanics

and Physics of Solids, Vol. 15, No. 5, 1967, pp. 299-309.

doi:10.1016/0022-5096(67)90024-5

[3] R. Dhaliwal and H. Sherief, “Generalized Thermoelastic-

ity for Anisotropic Media,” Quarterly of Applied Mathe-

matics, Vol. 33, 1980, pp. l-8.

[4] A. E. Green and N. Laws, “On the Entropy Production

Inequality,” Archive for Rational Mechanics and Analysis,

Vol. 45, No. 1, 1972, pp. 47-53. doi:10.1007/BF00253395

[5] A. E. Green and K. A. Lindsay, “Thermoelasticity,”

Journal of Elasticity, Vol. 2, No. 1, 1972, pp. 1-7.

doi:10.1007/BF00045689

[6] A. E. Green and P. M. Naghdi, “Thermoelasticity With-

out Energy Dissipation,” Journal of Elasticity, Vol. 31,

No. 3, 1993, pp. 189-208. doi:10.1007/BF00044969

[7] D. Y. Tzou, “Macro- to Microscale Heat Transfer: The

Lagging Behavior,” 1st Edition, Taylor & Francis, Wa-

shington, 1996.

[8] D. Y. Tzou, “A Unified Approach for Heat Conduction

From Macro- to Micro- Scales,” Journal of Heat Transfer,

Vol. 117, No. 1, 1995, pp. 8-16. doi:10.1115/1.2822329

[9] D. Y. Tzou, “Experimental Support for the Lagging Be-

havior in Heat Propagation,” Journal of Thermophysics

and Heat Transfer, Vol. 9, 1995, pp. 686-693.

doi:10.2514/3.725

[10] V. Danilovskaya, “Thermal Stresses in an Elastic Half-

space Due to Sudden Heating of Its Boundary,” Prikl Mat.

Mekh., In Russian, Vol. 14, 1950, pp. 316-324.

[11] D. S. Chandrasekharaiah and K. S. Srinath, “One-Dimen-

sional Waves in a Thermoelastic Half-Space Without En-

ergy Dissipation,” International Journal of Engineering

Science, Vol. 34, No. 13, 1996, pp. 1447-1455.

doi:10.1016/0020-7225(96)00034-1

[12] S. K. Roychoudhuri and P. S. Dutta, “Thermoelastic In-

teraction Without Energy Dissipation in an Infinite Solid

with Distributed Periodically Varying Heat Sources,” In-

ternational Journal of Solids Structures, Vol. 42, 2005,

pp. 4192-4203.

[13] H. Sherief, and R. Dhaliwal, “Generalized One-Dimen-

sional Thermal Shock Problem for Small Times,” Journal

of Thermal Stresses, Vol. 4, No. 3-4, 1981, pp. 407-420.

doi:10.1080/01495738108909976

[14] M. N. Allam, K. A. Elsibai and A. E. Abouelregal,

“Magneto-Thermoelasticity for an Infinite Body with a

Spherical Cavity and Variable Material Properties With-

out Energy Dissipation,” International Journal of Solids

and Structures, Vol. 47, No. 20, 2010, pp. 2631-2638.

doi:10.1016/j.ijsolstr.2010.04.021

[15] G. Honig and U. Hirdes, “A Method for the Numerical

Inversion of the Laplace Transform,” Journal of Compu-

tational and Applied Mathematics, Vol. 10, No. 1, 1984,

pp. 113-132. doi:10.1016/0377-0427(84)90075-X

[16] H. Youssef, “Thermomechanical Shock Problem of Gen-

eralized Thermoelastic Infinite Body with a Cylindrical

Cavity and Material Properties Depends on the Reference

Temperature,” Journal of Thermal Stresses, Vol. 28, No.

5, 2005, pp. 521-532. doi:10.1080/01495730590925029