Applied Mathematics, 2011, 2, 521-526
doi:10.4236/am.2011.25068 Published Online May 2011 (http://www.SciRP.org/journal/am)
Copyright © 2011 SciRes. AM
Surface Wave Propagation in a Generalized Thermoelastic
Material with Voids
Baljeet Singh1, Raj Pal2
1Department of Mathematics, Post Graduate Government College, Chandigarh, India
2Department of Mathematics, Government Post Graduate College, Hisar, India
E-mail: bsinghgc11@gmail.com
Received February 21, 2011; revised March 6, 2011; accepted March 10, 2011
Abstract
In the present paper, the propagation of surface wave in a generalized thermoelastic solid with voids is con-
sidered. The governing equations are solved to obtain the general solution in x-z plane. The appropriate
boundary conditions at an interface between two dissimilar half-spaces are satisfied by appropriate particular
solutions to obtain the frequency equation of the surface wave in the medium. Some special cases are also
discussed.
Keywords: Thermoelasticity, Surface Waves, Boundary Conditions, Voids
1. Introduction
Theory of linear elastic materials with voids is an impor-
tant generalization of the classical theory of elasticity.
The theory is used for investigating various types of geo-
logical and biological materials for which classical theo-
ry of elasticity is not adequate. The theory of linear elas-
tic materials with voids deals the materials with a distri-
bution of small pores or voids, where the volume of void
is included among the kinematics variables. The theory
reduces to the classical theory in the limiting case of vo-
lume of void tending to zero. Non-linear theory of elastic
materials with voids was developed by Nunziato and
Cowin [1]. Cowin and Nunziato [2] developed a theory
of linear elastic materials with voids to study mathe-
matically the mechanical behavior of porous solids. Puri
and Cowin [3] studied the behavior of plane waves in a
linear elastic material with voids. Iesan [4] developed the
linear theory of thermoelastic materials with voids.
Dhaliwal and Wang [5] formulated the heat-flux de-
pendent thermoelasticity theory for an elastic material
with voids. This theory includes the heat-flux among the
constitutive variables and assumes an evolution equation
for the heat-flux. Ciarletta and Scalia [6] developed a
nonlinear theory of non-simple thermoelastic materials
with voids. Ciarletta and Scarpetta [7] studied some re-
sults on thermoelasticity for dielectric materials with vo-
ids. Marin [8-9] studied uniqueness and domain of influ-
ence results in thermoelastic bodies with voids. Chirita
and Scalia [10] studied the spatial and temporal behavior
in linear thermoelasticity of materials with voids. A theo-
ry of thermoelastic materials with voids and without en-
ergy dissipation is developed by Cicco and Diaco [11].
Ciarletta et al. [12] presented a model for acoustic wave
propagation in a porous material which also allows for
propagation of a thermal displacement wave. Singh [13]
studied the wave propagation in a homogeneous, iso-
tropic generalized thermoelastic half space with voids in
context of Lord and Shulman theory. Ciarletta et al. [14]
studied the linear theory of micropolar thermoelasticity
for materials with voids. Recently, Aoudai [15] derived
the equations of the linear theory of thermoelastic diffu-
sion in porous media based on the concept of volume
fraction.
Lord Rayleigh [16] investigated the surface wave along
the plane surface of an elastic solid. Chandrasekharaiah
[17] discussed the effect of voids on Rayleigh waves in
an elastic solid with voids and on Rayleigh-lamb waves
in homogeneous elastic plate with voids. Many research-
ers have studied the surface waves in various theories of
thermoelasticity. For example, Chadwick and Windle
[18], Agarwal [19], Sharma and Singh [20], Mayer [21],
Semerak [22], Chandrasekharaiah [23], Sharma et al.
[24], Sharma and Kaur [25] and many others.
The present paper is motivated by the linear theory of
thermoelasticity with voids developed by Iesan [4]. In
Section 2, the governing equations are generalized with
the help of Lord and Shulman [26] theory. In Section 3,
B. SINGH ET AL.
522
these equations are solved for general solutions. In Sec-
tions 4 and 5, the particular solutions are obtained and
applied at required boundary conditions to obtain the fre-
quency equation of surface waves in thermoelastic mate-
rial with voids. In Section 6, some limiting cases of the
problem are discussed. In last section, some concluding
remarks are given.
2. Governing Equations
Following, Iesan [4] and Lord and Shulman [26], the
constitutive equations and field equations in terms of the
displacement, volume fraction and temperature, for ho-
mogeneous isotropic generalized thermo-elastic material
with voids in the absence of the body forces, heat sources
and extrinsic equilibrated body forces are
2δ
ijij ijkk
ee b
 
  (1)
0ii
qqK
,i

 (2)
,i
hi
 (3)
kk
eam

 (4)
kk
g
be m
  (5)
0ii
Tq
,
(6)

,,,,ijjjij iii
uubu
 
 
 (7)



00,0,
00 ,
E
kk kk
ii
cTu
mT K
 
 



u
(8)
,,iik k
bu m



(9)
where ,
are Lame’s constants. 00
is
the temperature of the medium in its natural state as-
sumed to be such that
,TTT 
01, T is the absolute
temperatu ij
T
re,
are the components of the stress tensor,

,,
1,
2
ijijj ii
euuu are the components of the displa-
cement vector, η is the entropy per unit mass, Κ is the
coefficient of thermal conductivity, 0
is the thermal
relaxation time. ,,b
are void material parameters, m
is thermo-void coefficient, tt
32
,


δ

is the
coefficient of linear thermal expansion, ij is Kroneck-
er deltai
q are the components of heat flux vector, i
h
are the components of equilibrated stress tensor,
,
is
change in volume fraction field, g is the intrinsic equili-
brated body force and a is thermal constant.
The Equations (7) to (9) are written in x-z plane as
 
2
22
3
1
2
2
1
2
2
,
u
uu
xz

22
2
33
1
22
2
3
2
2uu
u
zx
zx
u
b
zz t
 




 


(11)
2
2
3
1
00
22
22
,
E
u
u
cT mT
txtzt
Kxz
 

t



 


 




(12)
22
3
1
22
2
2,
u
u
b
x
z
xz
mt


 
 






 
(13)
where 0
1t


.
Now the displacement components 1 and 3 are
written in terms of potential function
u u
and
as
13
,uu
x
zzx
 

 

(14)
Using Equation (14) into Equations (10) to (13), we
have
22 2
22 2
,
x
zt

 


 

(15)

22 2
22
2b2
x
zt

 





 , (16)
22
*2
1
22
tt t
xz

 

 
 




, (17)
22 222
22 222
,

 
 

 

bm
x
zxz


(18)
t

where,
*00
1
,,
E
EE
Tm
K
cc

T
c

 .
Here Equation (15) is uncoupled, whereas Equations
(16), (17) and (18) are coupled in
, and
.
3
1
2
x
z
u
b
xx t
 



 
 

. Solutions
o solve the Equations (16) to (18), we consider
(10)
T
 

,,,,e,
ik xct
zzz

  (19)
Substituting (19) in Equations (16)-(18), we obtain
Copyright © 2011 SciRes. AM
B. SINGH ET AL.523

 
222
11
10,Dkzzb z

 
(2
 0)




22 *22
10,
ikDz kDi
iz
 


 


(2
z
1)

 


22
2220
bkDzm z
kD z

 



(22)
where,
22
22
1
2
1
d,,
22
d
,
2
c
Dz
b
bkc

 




and
The non-trivial solutions of Equations (20) to (22) ex-
is
(23)
where
t if
642
0123
0LD LD LD L

 
*
*222* 2
111
**
22*2 **
2
*4 *2*222
32
1
3
11 11
22 *2
111
3
12
12
2
Lki bbk
i
Lk ki
kb kiki
iim k
ii ibibm
bbkbbkib b
Lk

 
 
  
0
L

 
  




 
 

 


22*4*2*22
23
1
22 2
11 1
224* 2
111
1kb b
ik iiimik
ikiki bk
ib mkbb kibbk

4
 
 
 
 

 

Let be the roots of the auxiliary Equation
(2
123
,,mm m
hen the g3), teneral solutions
, and
are
written as

3
12
3
2
1234
56
eeee
eee
mz
mzm zmz
ik xct
mz
mz
AAA A
AA



1
(24)
1
e
(25)
1
e
(26)
where

3
12
3
2
112 23 314
25 36
eee
eee
mz
mzm zmz
ik xct
mz
mz
AA AA
AA
 


 


3
12
3
2
112 23 31 4
25 36
eee
eee
mz
mzmzmz
ik xct
mz
mz
AA AA
AA
 


 


222 2
2,1,2,3
ii i
i
i
mkbGG i
Gmb
 





 
22 2
12,
ii i
km i
bb
1,2,3


 


222
ii
Gkm



The general solution
of Equation (15) is written as

44
**
01
eee
ik xct
mz mz
BB
 , (27)
where, 22 2
41.mkc




4. Formulation of the Problem
Let us consider two semi-infinite half-spaces of ther-
ic solid with voids welded contact as shown in
igure 1. The particular solutions in half-spaces M and
moelast in
F
M are as follows:
For medium M,

3
12
12 3
eeee
ik xct
mz
mzm z
AA A

 (28)

3
12
112 23 3
eeee
ik xct
mz
mzm z
AA A


  (29)

3
2
223 3
eee
ik xct
mz
m z
A A
 
1
11
e
mz
A
  (30)
where,

4
1emz ikx ct
B

(31)
2221
123
0
2222 222223
123
L
m m
2
12 23 31
00
,
,
L
mm mL
L
mmm mmmm
LL


:,,,,,
M
ab m
 
 
Thermo-elastic solid half-space with voids
:,,,,,
M
abm

Thermo-elastic solid half-space with voids
Figure 1. Geometry of the problem.
Copyright © 2011 SciRes. AM
B. SINGH ET AL.
524
Similarly, for medium M
(32)
(33)
(34)
(35)
Here, the symbols with primes in the following sec-
tions correspond to medium M.
5. Boundary Conditions
The boundary conditions at the interface z = 0 are e
continuity placement
coperature and volume frac-
tional field, i.e.


3
12
12 3
eeee
ik xct
mz
mzm z
AA A

 



3
12
11223 3
eeee
ik xct
mz
mzm z
AAA
 

 
 


3
12
112 23 3
eeee
ik xct
mz
mzm z
AAA
 

 
 

4
1emz ikx ct
B


th
of force stress components, dis
mponents, heat flux, tem
12
3311
,,
,,
,,,
zzzz zxzx
zzz z
uuuu
 





 


.
where,
(36)
33
11
,,
zx z x
uu
xzx z
  

  



 
0
12
0
2 ,
,
1,
1
zx
b
e
uu
ikc
K
Kikc
 




 



The particular solutions (29) to (35) satisf
boundary conditions if
2,
2
zzzz kk
zzzz kk
ee b
ee





2,
zx zx zx
e






y the above
11
21
a
12 13 14 1516 17 18
22 23 24 2526 27 28
3132 3334 3536 37 38
4142 4344 4546 47 48
5152 5354 5556 57 58
6162 6364 6566 67 68
7172 7374 7576 77 78
818283 84 8586 87 88
0
aaaaaaaa
aaaaaaa
aaa aaaaa
aaaaaaaa
aaa aaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
(37)
where

22
1111 1
2akm b

22
12 22 2
2
ak m b

 
  
 




2
33 3
14 4
22
1511 1
22
1622 2
22
1733 3
184 211
222233
22
244 25
,
2,
2,
2,
2,
2, 2,
2, 2,
,
m b
aikm
akm b
akm b
akmb
aikmai km
aikmaikm
akma


 
 
 


 



 

 

 

 
 
 

126 2
22
3 284
311 13222333334
351113621237313
38
411 14222433344
45112462224733
2, 2
2, .
,,,0,
,,,
0.
,,,0,
,,
ikma ikm
ikma km
amam ama
am amam
a
amamama
am amam



 

 
 

 
 
 
 
 
 
 
 
2
48
511 52253354
55156257358
61626364 4
65666768 4
711 72273374
751 762773 78
811 82
,
0.
,,,,
,,,.
,,, ,
,,,.
,,,0,
,,,0.
,
a
amamama ik
amamamaik
aikaikaikam
aikaikaikam
aa aa
aa a a
aa





 
 
  


 

283 384
851 86287388
,,0,
,,,0.
aa
aa aa



 
2
13 2ak

 
27
a
,
The Equation (37) gives the frequency equation for
surface wave in a generalized thermo-elastic medium
with voids.
6. Limiting Cases
1) If we neglect the void parameters, then the Equation
(37) reduces to
111213 14 1516
2122 2324 2526
3132 3334 35 36
4142 4344 4546
5152 5354 55 56
6162 6364 6566
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa






(3)
w
8
here,
22
11
ak m
 

1 1
22
22 134
2
141 1
2,
2,2
,
m aikm
m


 

  

12
2
2
ak
ak



,
Copyright © 2011 SciRes. AM
B. SINGH ET AL.525
,
,
The Equation (38) gives the frequency equation for
surface waves in a generalized thermo-elastic medium.
2) If we neglect thermal parameters, then the Equation
(37) reduces to


22
222 234
22
241 252 264
311 1322233
3411 13512236
411 4
2,2
2,2 ,
,,0,
,,0,
,
akma ikm
aimkaimka km
amama
amama
ama
 


 
 
 

 
 
 

 

2243
44145246
515253 4,
545556 4,
611 622 63
641 65266
,,
,,.
,,
,,
,,0,
,,0.
ma ik
amamaik
aikaikam
ikaikam
aa a
aaa








  
 


 

15 22 164
22
21 1
2, 2 ,,aimkaimkakm


 
a
1112 1314 15 16
2122 2324 25 26
3132 3334 35 36
4142 4344 45 46
5152 5354 55 56
6162 6364 65 66
0
bbbbbb
bbbbbb
bbbbbb
bbbbbb
bbbbbb
bbbbbb
(39)
where
,
,
.
The Equation (39) gives the frequency equation for
surface wave in an elastic medium with voids.
3) If we neglect void and thermal parameters, then the
Equation (37) reduces to



22
111 1
22
1233 134
22
223 234
22
241 253 264
2,
2,2
, 2,
2, 2,
bk mb
bk mbbikm
kbimkbkm
bimkbimkbkm
b
 
 

 
 
 
 
311 1323333
3421 13523336
411 42343
44145346
5253 4,
545556 4
611 623 63
641 653 66
,,0,
,,0.
,, ,
,,.
,,
,,
,,0,
,,0.
mbm b
bmbmb
bmbmbik
bmbmbik
bikbikbm
bikbikbm
bb b
bbb

 



 





  


 


14 1 1
22
2,
2,
2,
bk mb
bkmbb ikm

 
 


 
 
 

15 33164
22
21 1
2bi
m

  
51
11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44
0
cccc
cccc
cccc
cccc
(40)
where



22
111 124
22
131 144
22
211 224
22
231 244
311 32
33134
4142 4
43444
2, 2
2,2
2,,
2, .
,,
,
,,
,.
ck mcikm
ck mcikm
cimkckm
cimkckm
cmc ik
cmcik
cikcm
cikcm
 
 


 ,
,
 
 
 





 
The Equation (40) gives the frequency equation for
surface wave in an elastic medium
4) If we remove the upper half-space, then the Equa-
tion (37) reduces to
11 121314
21 222324
31 323334
41 424344
0
dddd
dddd
dddd
dddd
(41)
where



22
1111 1
22
12222
22
1333 3
144 21122
22
233 244
311 13222333334
411 14222433344
2,
2,
2,
22,2
2,.
,,,
,,,
dkm b
dkm b
dkm b
di kmdi kmdi km
dikmd km
dmdmdmd
dmdmdmd


 
 



 
 
 
 
 
 
 .
2,
0.
0
The Equation (41) gives the frequency equation of a
Ra
The frequency equation of surface waves in generalized
thermoelastic material with voids is ob
quency equation of Rayleigh surface wav
limiting case. The theoretical results indicate that the
speed of surface wave depends on various material pa-
yleigh surface wave in a half-space of a generalized
thermo-elastic material with void.
7. Conclusions
tained. The fre-
e is obtained as
Copyright © 2011 SciRes. AM
B. SINGH ET AL.
Copyright © 2011 SciRes. AM
526
s. Present analytical solutions can be used to
numerically the speed of surface wave for a particular
material modeled as thermoelastic material with voids.
8. References
[1] J. W. Nunziato and S. C. Cowin, “A Nonlinear Theor
Elastic Materials with Voids,” Archive for Rational
chanics and Analysis, Vol. 72, No. 2, 1979, pp. 175-201.
[2] S. C. Cowin and J. W. Nunziato, “Linear Elastic Materi-
als with Voids,” Journal of Elasticity, Vol. 13, No. 2
1983, 125-147. doi:10.1007/BF00041230
[3]
oelastic Materials
echanica, Vol. 60, No. 1-2, 1986, pp. 67-
r-
nal of Applied Mathematics and Mechanics, Vol. 75, No.
7-714.
] M. Marin, “A Uniqueness Result for Body with Voids in
and Temporal
in Elastic Materials
ation in a Generalized Thermoe-
s with Voids,” European
Zeitschrift für Angewandte Mathe-
gs of the London
ol. 25, No.
aries,”
ty of America, Vol. 280,
Surface
tion of Surface
of Thermal Relaxation on
h, “Thermoelastic Rayleigh Waves
d
9
99-309.
rameterfind [14] M. Ciarletta, M. Svanadze and L. Buonanno, “Plane
Waves and Vibrations in the Theory of Micropolar
Thermoelasticity for Material
y
M
of
e- matik und Physik, Vol. 61, No. 2, 2010, pp. 357-379.
, Mat
P. Puri and S. C. Cowin, “Plane Waves in Linear Elastic
Materials with Voids,” Journal of Elasticity, Vol. 15, No.
2, 1985, pp. 167-183. doi:10.1007/BF00041991
] D. Iesan, “A Theory of Therm[4 with
2, 1987, pp. 205-211.
[18] P. Chadwick and D. W. Windle, “Propagation of Ray-
leigh Waves along Isothermal and Insulated Bound
Proceedings of the Royal Socie
Voids,” Acta M
89. doi:10.1007/BF01302942
[5] R. S. Dhaliwal and J. Wang, “A Heat-Flux Dependent
Theory of Thermoelasticity with Voids,” Acta Mechanica,
Vol. 110, No. 1-4, 1993, pp. 33-39.
[6] M. Ciarletta and A. Scalia, “On the Nonlinear Theory of
Nonsimple Thermoelastic Materials with Voids,” Journal
of Applied Mathematics and Mechanics, Vol. 73, No. 2,
1993, pp. 67-75.
[7] M. Ciarletta and E. Scarpetta, “Some Results on Ther-
Moelasticity for Dielectric Materials with Voids,” Jou
Wave
9, 1995, pp. 70
[8
Linear Thermoelasticity,” Rendiconti di Matematica, Vol.
17, No. 1, 1997, pp. 103-113.
[9] M. Marin, “On the Domain of Influence in Thermoelas-
ticity of Bodies with Voids,” Archiv der Mathematik, Vol.
33, No. 4, 1997, pp. 301-308.
[10] S. Chirita and A. Scalia, “On the Spatial
Rayl
Behavior in Linear Thermoelasticity of Materials with
Voids,” Journal of Thermal Stresses, Vol. 24, No. 5,
2001, pp. 433-455.
[11] S. D. Cicco and M. Diaco, “A Theory of Thermoelastic
Materials with Voids without Energy Dissipation,” Jour-
nal of Thermal Stresses, Vol. 25, No. 5, 2002, pp. 493-
503. doi:10.1080/01495730252890203
[12] M. Ciarletta, B. Straughan and V. Zampoli, “Thermo-
poroacoustic Acceleration Waves
with Voids without Energy Dissipation,” International
Journal of Engineering Science, Vol. 45, No. 9, 2007, pp.
736-743. doi:10.1016/j.ijengsci.2007.05.001
[13] B. Singh, “Wave Propag
lastic Material with Voids,” Applied Mathematics and
Computation, Vol. 189, No. 1, 2007, pp. 698-709.
doi:10.1016/j.amc.2006.11.123
Journal of Mechanics-A-Solids, Vol. 28, No. 4, 2009, pp.
897-903. doi:10.1016/j.euromechsol.2009.03.008
[15] M. Aoudai, “A Theory of Thermoelastic Diffusion Ma-
terial with Voids,”
doi:10.1007/s00033-009-0016-0
[16] L. Rayleigh, “On Waves Propagating along the Plane
Surface of an Elastic Solid,” Proceedin
hematical Society, Vol. 17, No. 1, 1885, pp. 4-11.
doi:10.1112/plms/s1-17.1.4
[17] D. S. Chandrasekharaiah, “Effects of Surface Stresses
and Voids on Rayleigh Waves in an Elastic Solid,” In-
ternational Journal of Engineering Science, V
No. 1380, 1964, pp. 47-71. doi:10.1098/rspa.1964.0130
[19] V. K. Agarwal, “On Surface Waves in Generalized
Thermoelasticity,” Journal of Elasticity, Vol. 8, No. 2,
1978, pp. 171-177. doi:10.1007/BF00052480
[20] J. N. Sharma and H. Singh, “Thermoelastic
s in a Transversely Isotropic Half-Space with
Thermal Relaxation,” Indian Journal of Pure and Applied
Mathematics, Vol. 16, No. 10, 1985, pp. 1202-1219.
[21] A. P. Mayer, “Thermoelastic Attenua
Acoustic Waves,” International Journal of Engineering
Science, Vol. 28, No. 10, 1990, pp. 1073-1082.
doi:10.1016/0020-7225(90)90135-6
[22] F. V. Semerak, “The Effect
eigh Surface Waves in a Thermoelastic Medium,”
Journal of Mathematical Sciences, Vol. 88, No. 3, 1997,
pp. 396-399.
[23] D. S. Chandrasekharaia
without Energy Dissipation,” Mechanics Research Com-
munication, Vol. 24, No. 1, 1997, pp. 93-102.
doi:10.1016/S0093-6413(96)00083-3
[24] J. N. Sharma, D. Singh and R. Kumar, “Generalize
Thermoelastic Waves in Homogeneous Isotropic Plates,”
Journal of the Acoustical Society of America, Vol. 108,
No. 2, 2000, pp. 848-851. doi:10.1121/1.42961
[25] J. N. Sharma and D. Kaur, “Rayleigh Waves in Rotating
Thermoelastic Solids with Voids” International Journal
of Applied Mathematics and Mechanics, Vol. 6, No. 3,
2010, pp. 43-61.
[26] H. W. Lord and Y. Shulman, “A Generalized Dynamical
Theory of Thermoelasticity,” Journal of the Mechanics
and Physics of Solids, Vol. 15, No. 5, 1967, pp. 2
doi:10.1016/0022-5096(67)90024-5