
Study of the Temperature Distribution in a Road Tunnel under the Effect of Two Ventilation Systems
Copyright © 2011 SciRes. JEP
doi:10.1016/j.expthermflusci.2008.03.005
[3] L. H. Hu, R. Huo, W. Peng, W. K. Chow and R. X. Yang,
“On the Maximum Smoke Temperat ure under the Ceiling
in Tunnel Fires,” Tunnelling and Underground Space
Technology, Vol. 21, No. 6, 2006, pp. 650-655.
doi:10.1016/j.tust.2005.10.003
[4] L. H. Hu, R. Huo, H. B. Wang and R. X. Yang, “Expe-
rimental and Numerical Studies on Longitudinal Smoke
Temperature Distribution Upstream and Downstream from
the Fire in a Road Tunnel,” Journal of fire sciences, Vol.
25, No. 1, 2007, pp. 23-43.
[5] S. M. Jojo and W. K. Chow, “Numerical Studies on
Performance Evaluation of Tunnel Ventilation Safety
Systems,” Tunnelling and Underground Space Techno-
logy, Vol. 18, No. 5, 2003, pp. 435-52.
doi:10.1016/S0886-7798(03)00023-3
[6] J. Modic, “Fire Simulation in Road Tunnels,” Tunnelling
and Underground Space Technology, Vol. 18, No. 5,
2003, pp. 525-530. doi:10.1016/S0886-7798(03)00069-5
[7] M. Banjac and B. Nikolić, “Numerical Study of Smoke
Flow Control in Tunnel Fires Using Ventilation
Systems,” FME Transactions, Vol. 36, No. 1, 2008, pp.
145-150.
[8] O. Mégret and O. Vauquelin, “A Model to Evaluate
Tunnel Fire Characteristics,” Fire Safety Journal, Vol. 34,
No. 4, 2000, pp. 393-401.
doi:10.1016/S0379-7112(00)00010-2
[9] Y. Wu and M. Z. A. Bakar, “Control of Smoke Flow in
Tunnel Fires Using Longitudinal Ventilation Systems—A
Study of the Critical Velocity,” Fire Safety Journal, Vol.
35, No. 4, 2000, pp. 363-90.
doi:10.1016/S0379-7112(00)00031-X
[10] L. H. Hu, R. Huo, H. B. Wang, Y. Z. Li and R. X. Yang,
“Experimental Studies on Fire-Induced Buoyant Smoke
Temperature Distribution along Tunnel Ceiling,” Building
and Environment, Vol. 42, No. 11, 2007, pp. 3905-
3915. doi:10.1016/j.buildenv.2006.10.052
[11] O. Vauquelin, “Experimental Simulations of Fire-Induced
Smoke Control in Tunnels Using an ‘Air-Helium
Reduced Scale Model’: Principle, limitations, Results and
Future,” Tunneling and Underground Space Technology,
Vol. 23, 2008, pp. 171-178.
doi:10.1016/j.tust.2007.04.003
[12] O. Vauquelin, “Parametrical Study of the Back Flow
Occurrence in Case of a Buoyant Release into a
Rectangular Channel,” Experimental Thermal and Fluid
Science, Vol. 29, 2005, pp. 725-731.
doi:10.1016/j.expthermflusci.2005.01.002
[13] C. C. H wa ng a nd J . C. Edwards, “The Critical Ventilation
Velocity in Tunnel Fires—A Computer Simul ation,” Fire
Safety Journal, Vol. 40, No. 3, 2005, pp. 213-244.
doi:10.1016/j.firesaf.2004.11.001
[14] J. S. Newma, “Experimental Evaluation of Fire-Induced
Stratification,” Combust Flame, Vol. 57, No. 33, 1984, pp.
33-39.
doi:10.1016/0010-2180(84)90135-4
[15] H. Kurioka, Y. Oka, H. Satoh and O. Sugawa, “Fire
Properties in Near Field of Square Fire Source with
Longitudinal Ventilation in Tunnels,” Fire Safety Journal,
Vol. 38, No. 4, 2003, pp. 319-340.
doi:10.1016/S0379-7112(02)00089-9
[16] J. P. Kunsch, “Simple Model for Control of Fire Gases in
a Ventilated Tunnel,” Fire Safety Journal, Vol. 37, No. 1,
2002, pp. 67-81. doi:10.1016/S0379-7112(01)00020-0
[17] Y. Oka and G. T. Atkinson, “Control of Smoke Flow in
Tunnel Fire,” Fire Safety Journal, Vol. 25, No. 4, 1995,
pp. 305-322. doi:10.1016/0379-7112(96)00007-0
[18] F. Chen, “Smoke Propagation in Road Tunnels,” Institute
of Applied Mechanics, National Taiwan University,
Taipei, Applied Mechanics Reviews, Vol. 53, No. 8, 2000,
p. 207. doi:10.1115/1.3097350
[19] G. B. Grant, S. F. Jagger, and C. J. Lea, “Fires in
Tunnels,” Philosophical Transactions of the Royal
Society—Theme Issue on Fire Dynamics, Vol. 356, No.
1748, 1998, pp. 2873-2906.
[20] G. B. Grant and D. Drysdale, “Estimating Heat Release
Rates from Large-Scale Tunnel Fi res,” Fire Safety
Science, Vol. 5, 1995, pp. 1213-1224.
[21] S. F. Luchian and A. G. Bendelius, “West Virgina
Memorial Tunnel Fire,” Test Program, Proceedings of t he
International Confere nce on Fire s in T unnels, Wokingham,
October 1994.
[22] M. A. Delichatsios, “The Flow of Fire Gases under a
Beamed Ceiling,” Combustion and Flame, Vol. 43, No. 1,
1981, pp. 1-10. doi:10.1016/0010-2180(81)90002-X
[23] J. P. Kunsch, “Critical Velocity and Range of a Fire-Gas
Plume in a Ventilated Tunnel,” Atmospheric Environment,
Vol. 33, No. 1, 1999, pp. 13-24.
doi:10.1016/S1352-2310(98)00118-6
[24] K. McGrattan, “Fire Dynamics Simulator (Version 4)
Technical Reference Guide,” NIST Special Publication
1018, March 2006.
[25] K. McGrattan and G. Forney, “Fire Dynamics Simulator
(Version 4) User’s Guide,” NIST Special Publication
1019, March 2006.
[26] Y. F. Li and W. K. Chow, “Computational Fluid
Dynamics Simulation of Fire-Induced Air Flow in a
Large Space Building: Key Points to Note,” In:
Proceedings of the ASME Heat Transfer/Fluids Engin-
eering Summer Conference 2004, HT/FED 2004,
Charlotte, 1 January 2004, pp. 1163-1169.
[27] W. Zhang, A. Hamer, M. Klassen, D. Carpenter and R.
Roby, “Turbulence Statistics in a Fire Room Model by
Large Eddy Simulation,” Fire Safety Journal, Vol. 37,
No. 8, 2002, pp. 721-752.
doi:10.1016/S0379-7112(02)00030-9
[28] J. Smagorinsky, “General Circulation Experiments with
Primitive Equations-I, the Basic Experiment,” Monthly
Weather Review, Vol. 91, No. 3, 1963, pp. 99-105.
doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.
CO;2
[29] P. H. Thomas, “The Movement of Smoke in Horizontal