
B. ZENG  ET  AL. 
Copyright © 2013 SciRes.                                                                                 ENG 
 
property. In the later work, we hope that new multi-wa- 
velength stra tegy can be used to further improve th e pre- 
diction accuracy. 
REFERENCES 
[1] A. A. Mbaideen and M. Benaissa, “Determination of Glu- 
cose Concentration from NIR Spectra Using Independent 
Component Regression,” Chemometrics and Intelligent 
Laboratory Systems, Vol. 105, No. 1, 2010, pp. 131-135. 
http://dx.doi.org/10.1016/j.chemolab.2010.11.008  
[2] M. Rohrscheib, R. Robinson and R. P. Eaton, “Non-In- 
vasive Glucose Sensors and Improved Informatics—The 
Future of Diabetes Management,” Diabetes, Obesity and 
Metabolism, Vol. 5, No. 5, 2003, pp. 280-284. 
http://dx.doi.org/10.1046/j.1463-1326.2003.00275.x  
[3] H. V. L. Toal, M. Weidenmuller, A. Xhelaj and W. Man- 
tele, “A Novel Approach to Non-Invasive Glucose Mea- 
surement by Mid-Infrared Spectroscopy: The Combina- 
tion of Quantum Cascade Lasers (QCL) and Photoacous- 
tic Detection,” Vibrational Spectroscopy, Vol. 38, No. 1- 
2, 2005, pp. 209-215. 
http://dx.doi.org/10.1016/j.vibspec.2005.02.025  
[4] M. Mueller, M. Grunze, E. H. Leiter, P. C. Reifsnyder, U. 
Klueh and D. Kreutzer, “Non-Invasive Glucose Mea- 
surements in Mice Using Mid-Infrared Emission Spec- 
troscopy,” Sensors and Actuators B: Chemical, Vol. 142, 
No. 2, 2009, pp. 502-508. 
http://dx.doi.org/10.1016/j.snb.2009.08.048  
[5] K. Maruo, M. Tsurugi, J. Chin, T. Ota, H. Arimoto and Y. 
Yamada, “Noninvasive Blood Glucose Assay Using a 
Newly Developed Near-Infrared System,” IEEE Journal 
of Selected Topics in Quantum Electronics, Vol. 9, No. 2, 
2003, pp. 322-399. 
http://dx.doi.org/10.1109/JSTQE.2003.811283  
[6] K. X. Xu, Q. J. Qiu, J. Y. Jiang and X. Y. Yang, “Non- 
Invasive Glucose Sensing with Near-Infrared Spectros- 
copy Enhanced by Optical Measurement Conditions Re- 
production Technique,” Optics and Lasers in Engineer- 
ing, Vol. 43, No. 10, 2004, pp. 1096-1106. 
http://dx.doi.org/10.1016/j.optlaseng.2004.06.018  
[7] W. Wang, L. F. Yan, B. W. Liu and H. Zhang, “Multi- 
sensors Information Fusion With Neural Networks for 
Noninvasive Blood Glucose Detection,” Lecture Notes in 
Computer Science, Vol. 3498, 2005, pp. 760-766. 
http://dx.doi.org/10.1007/11427469_121  
[8] Y. L. Yeh, “Real -Time Measurement of Glucose Concen- 
tration and Average Refractive Index Using a Laser In- 
terferometer,” Optics and Lasers in Engineering, Vol.  46, 
No. 9, 2008, pp. 666-670. 
http://dx.doi.org/10.1016/j.optlaseng.2008.04.008  
[9] Q. B. Li, L. N. Li and G. J. Zhang, “A Nonlinear Model 
for Calibration of Blood Glucose Noninvasive Measure- 
ment Using Near Infrared Spectroscopy,” Infrared Phys- 
ics & Technology, Vol. 53, No. 5, 2010, pp. 410-417. 
http://dx.doi.org/10.1016/j.infrared.2010.07.012  
[10] A. Caduff, M. S. Talary, M. Mueller, F. Dewarrat, J. Kli- 
sic, M. Donath, L. Heinemann and W. A. Stahel, “Non- 
Invasive Glucose Monitoring in Patients with Type 1 Di- 
abetes: A Multisensor System Combining Sensors for Di- 
electric and Optical Characterisation of Skin,” Biosen- 
sors and Bioelectronics, Vol. 24, No. 9, 2009, pp. 2778- 
2784. http://dx.doi.org/10.1016/j.bios.2009.02.001