
Optimization of Photo-Hydrogen Production by Immobilized Rhodopseudomonas Faecalis RLD-53
6
5. Acknowledgements
This research was supported by the financial support
from the National Nature Science Foundation of China
(No. 30870037, 50821002 and 50638020), State Key
Laboratory of Urban Water Resource and Environment
(HIT) (Grant No.QAK200806). The authors would like
to thank the Key Laboratory of water/soil toxic pollutants
control and bioremediation of Guangdong Higher Educa-
tion Institutes, Jinan University for supporting this study.
REFERENCES
[1] P. C. Hallenbeck, “Fermentative Hydrogen Production:
Principles, Progress and Prognosis,” International Jour-
nal of Hydrogen Energy, Vol. 34, No. 17, 2009, pp.
7379-7389. doi:10.1016/j.ijhydene.2008.12.080
[2] E. Ozgür, A. E. Mars, B. Peksel, A. Louwerse, M. Yücel,
U. Gündüz, P. A. M. Claassen and I. Eroglu, “Biohydro-
gen Production from Beet Molasses by Sequential Dark
and Photo-Fermentation,” International Journal of Hy-
drogen Energy, Vol. 35, No. 2, 2010, pp. 511-517.
doi:10.1016/j.ijhydene.2009.10.094
[3] B. F. Liu, N. Q. Ren, D. F. Xing, J. Ding, G. X. Zheng, W.
Q. Guo, J. F. Xu and G. J. Xie, “Hydrogen Production by
Immobilized R. faecalis RLD-53 Using Soluble Metabo-
lites from Ethanol Fermentation Bacteria E. Harbinense
B49,” Bioresource Technology, Vol. 100, No. 10, 2009,
pp. 2719-2723.
doi:10.1016/j.biortech.2008.12.020PMid:19200719
[4] B. F. Liu, N. Q. Ren, G. J. Xie, J. Ding, W. Q. Guo and D.
F. Xing, “Enhanced Bio-Hydrogen Production by the
Combination of Dark and Photo Fermentation in Batch
Culture,” Bioresource Technology, Vol. 101, No. 14,
2010, pp. 5325-5329. doi:10.1016/j.biortech.2010.02.024
[5] S. Ozmihci and F. Kargi, “Bio-Hydrogen Production by
Photo-Fermentation of Park Fermentation Effluent with
Intermittent Feeding and Effluent Removal,” Interna-
tional Journal of Hydrogen Energy, Vol. 35, No. 13,
2010, pp. 6674-6680. doi:10.1016/j.ijhydene.2010.04.090
[6] H. Argun and F. Kargi, “Effects of Light Source, Inten-
sity and Lighting Regime on Bio-Hydrogen Production
from Ground Wheat Starch by Combined Dark and
Photo-Fermentations,” International Journal of Hydrogen
Energy, Vol. 35, No. 4, 2010, pp. 1604-1612.
doi:10.1016/j.ijhydene.2009.12.033
[7] Y. C. Lo, C. Y. Chen, C. M. Lee and J. S. Chang, “Se-
quential Dark-Photo Fermentation and Autotrophic Mi-
croalgal Growth for High-Yield and CO2-free BioHydro-
gen Production,” International Journal of Hydrogen En-
ergy, Vol. 35, No. 20, 2010, pp.10944-10953.
doi:10.1016/j.ijhydene.2010.07.090
[8] B. Uyar, I. Eroglu, M. Yücel and U. Gündüz, “Photo
Fermentative Hydrogen Production from Volatile Fatty
Acids Present in Dark Fermentation Effluents,” Interna-
tional Journal of Hydrogen Energy, Vol. 34, No. 10,
2009, pp. 4517-4523.
doi:10.1016/j.ijhydene.2008.07.057
[9] S. K. S. Patel, H. J. Purohit and V. C. Kalia, “Dark Fer-
mentative Hydrogen Production by Defined Mixed Mi-
crobial Cultures Immobilized on Ligno-Cellulosic Waste
Materials,” International Journal of Hydrogen Energy,
Vol. 35, No. 19, 2010, pp. 10674-10681.
doi:10.1016/j.ijhydene.2010.03.025
[10] J. H. Jo, D. S. Lee, D. Park and J. M. Park, “Biological
Hydrogen Production by Immobilized Cells of Clostrid-
ium Tyrobutyricum JM1 Isolated from a Food Waste
Treatment Process,” Bioresource Technology, Vol. 35,
No. 19, 2008, pp. 6666-6672.
doi:10.1016/j.biortech.2007.11.067
[11] T. Matsunaga, I, Karube and S. Suzuki, “Some Observa-
tions on Immobilized Hydrogen-Producing Bacteria: Be-
havior of Hydrogen in Gel Membranes,” Biotechnology
Bioengineering, Vol. 22, No. 12, 1980, pp. 2607-2615.
doi:10.1002/bit.260221209
[12] J. O. Kim, Y. H. Kim, J. Y. Ryu, B. K. Song, I. H. Kim
and S. H. Yeom, “Immobilization Methods for Continu-
ous Hydrogen Gas Production Biofilm Formation Versus
Granulation,” Process Biochemistry, Vol. 40, No. 3-4,
2005, pp. 1331-1337. doi:10.1016/j.procbio.2004.06.008
[13] H. Yokoi, T. Tokushige, J. Hirose, S. Hayashi and Y.
Takasaki, “Hydrogen Production by Immobilized Cells of
Aciduric Enterobacter Aerogenes Strain HO-39,” Journal
of Fermentation and Bioengineering, Vol. 83, No. 5,
1997, pp. 481-484. doi:10.1016/S0922-338X(97)83006-1
[14] S. Sawayama, K. K. Rao and D. Hall, “Immobilization of
Rhodobacter capsulatus on Cellulose Beads and Water
Treatment Using a Photobioreactor,” Journal of Fermen-
tation and Bioengineering, Vol. 86, No. 5, 1998, pp.
517-520. doi:10.1016/S0922-338X(98)80164-5
[15] X. Tian, Q. Liao, W. Liu, Y. Z. Wang, X. Zhu, J. Li and
H. Wang, “Photo-Hydrogen Production Rate of A
PVA-Boric Acid Gel Granule Containing Immobilized
Photosynthetic Bacteria Cells,” International Journal of
Hydrogen Energy, Vol. 34, No. 11, 2009, pp. 4708-4717.
doi:10.1016/j.ijhydene.2009.03.042
[16] N. Q. Ren, B. F. Liu, J. Ding and G. J. Xie, “Hydrogen
Production with R. faecalis RLD-53 Isolated from
Freshwater Pond Sludge,” Bioresource Technology, Vol.
100, No. 1, 2009, pp. 484-487.
doi:10.1016/j.biortech.2008.05.009
[17] B. F. Liu, N. Q. Ren, J. Ding, G. J. Xie and W. Q. Guo,
“The Effect of Ni2+, Fe2+ and Mg2+ Concentration on
Photo-Hydrogen Production by Rhodopseudomonas fae-
calis RLD-53,” International Journal of Hydrogen En-
ergy, Vol. 34, No. 2, 2009, pp. 721-726.
doi:10.1016/j.ijhydene.2008.11.033
[18] P. Felten, H. Zürrer and R. Bachofen, “Production of
Molecular Hydrogen with Immobilized Cells of
Rhodospirillum rubrum,” Applied Microbiology and Bio-
technology, Vol. 23, No 1, 1985, pp. 15-20.
doi:10.1007/BF02660112
[19] E. Seol, A. Manimaran, Y. Jang, S. Kim, Y. K. Oh and S.
Park, “Sustained Hydrogen Production from Formate
Using Immobilized Recombinant Escherichia coli SH5,”
International Journal of Hydrogen Energy (in Press).
C
opyright © 2011 SciRes. NR