C. Y. LIU ET AL.
Copyright © 2013 SciRes. ENG
In conclusion, the therapeutic effect of F a sudil in EAE
may be related to shifting of macrophages from M1 to
M2 phenotype. By using FACS assay, the treatment of
Fasudil inhibits M1 macrophages, and elevates M2 ma-
crophages, providing novel mechanism of Fasudil in the
treatment of EAE.
REFERENCES
[1] E. M. Frohman, M. K. Racke and C. S. Raine, “Multiple
Sclerosis—The Plaque and Its Pathogenesis,” The New
England Journal of Medicine, Vol. 254, 2006, pp. 942-
955. http://dx.doi.org/10.1056/NEJMra052130
[2] R. J. Winquist, A. Kwong, R. Ramachandran and J. Jain,
“The Complex Etiology of Multiple Sclerosis,” Biochem-
ical Pharmacology, Vol. 74, 2007, pp. 1321-1329.
http://dx.doi.org/10.1016/j.bcp.2007.04.026
[3] O. Neuhaus, O. Stüve, S. S. Zamvil and H. P. Hartung,
“Are Statins a Treatment Option for Multiple Sclerosis?”
The Lancet Neurology, Vol. 3, 2004, pp. 369-371.
http://dx.doi.org/10.1016/S1474-4422(04)00770-7
[4] X. Sun, M. Minohara, H. Kikuchi, T. Ishizu, M. Tanaka
and H. Piao, et al., “The Selective Rho-Kinase Inhibitor
Fasudil Is Protective and Therapeutic in Experimental
Autoimmune Encephalomyelitis,” Journal of Neuroim-
munology, Vol. 180, 2006, pp. 126-134.
http://dx.doi.org/10.1016/j.jneuroim.2006.06.027
[5] Y. Gernez, L. A. Herzenberg, L. A. Herzenberg and R.
Tirouvanziam, “Phospho-FACS: A Powerful Tool for Ex-
ploring Intracellular Transduction Cascades,” Revue des
Maladies Respiratoires, Vol. 24, 2007, pp. 955-964.
http://dx.doi.org/10.1016/S0761-8425(07)92761-8
[6] T. W. Tung, K. Heydary, R. Tirouvanziam, B. Sahaf, D.
R. Parks and L. A. Herzenberg, “Modern Flow Cytometry:
A Practical Approach,” Clinics in Laboratory Medicine,
Vol. 27, 2007, pp. 453-468.
http://dx.doi.org/10.1016/j.cll.2007.05.001
[7] A. A. Pineda, M. Minohara, N. Kawamura, T. Matsushita,
R. Yamasaki, X. Sun, et al ., “Preventive and Therapeutic
Effects of the Selective Rho-Kinase Inhibitor Fasudil on
Experimental Autoimmune Neuritis,” Journal of the Neu-
rological Sciences, Vol. 306, 2011, pp. 115-120.
http://dx.doi.org/10.1016/j.jns.2011.03.031
[8] E. N. Benveniste, V. T. Nquyen and D. R. Wesemann,
“Molecular Regulation of CD40 Gene Expression in Ma -
crophages and Microglia,” Brain, Behavior, and Immuni-
ty, Vol. 18, 2004, pp. 7-12.
http://dx.doi.org/10.1016/j.bbi.2003.09.001
[9] N. A. Wolf, T. K. Amouzeqar and R. H. Swanborq, “Sy-
nergistic Interaction between Toll-Like Receptor Agon-
ists Is Required for Induction of Experimental Autoim-
mune Encephalomyelitis in Lewis Ra ts,” Journal of Neu-
roimmunology, Vol. 185, 2007, pp. 115-122.
http://dx.doi.org/10.1016/j.jneuroim.2007.02.001
[10] S. Sinha, L. Miller, S. Subramanian, O. J. McCarty, T.
Proctor, R. Meza-Romero, et al., “Binding of Recombi-
nant T Cell Receptor Ligands (RTL) to Antigen Present-
ing Cells Prevents Upregulation of CD11b and Inhibits T
Cell Activation and Transfer of Experimental Autoim-
mune Encephalomyelitis,” Journal of Neuroimmunology,
Vol. 225, 2010, pp. 52-61.
http://dx.doi.org/10.1016/j.jneuroim.2010.04.013
[11] S. G. Meuth, O. J. Simon, A. Grimm, N. Melzer, A. M.
Herrmann, P. Spitzer, et al., “CNS Inflammation and Neu-
ronal Degeneration Is Aggravated by Impaired CD200-
CD200R-Mediated Macrophage Silencing,” Journal of
Neuroimmunology, Vol. 194, 2008, pp. 62-69.
http://dx.doi.org/10.1016/j.jneuroim.2007.11.013