F. M. Olajuyigbe / Advances in Enzyme Research 1 (2013) 112-120 119
seeds. African Journal of Food Science, 5, 490-498.
[13] Savage, G.P. and Keenan, J.I. (1994) The composition and
nutritive value of groundnut kernels. In: Smart, J., Ed.,
The Groundnut Crop: Scientific Basis for Improvement,
Chapman and Hall, London, 173-213.
http://dx.doi.org/10.1007/978-94-011-0733-4_6
[14] Vos, P., et al. (2010) The Firmicutes. In: Vos, P., Garrity,
G., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A.,
Schleifer, K. and Whitman, W.B., Eds., Bergey’s Manual
of Systematic Bacteriology, 2nd Edition, Volume 3,
Springer, New York, 4-325.
[15] Fujiwara, N., Masui, A. and Imanaka, T. (1993) Purifica-
tion and properties of highly thermostable alkaline prote-
ase from an alkalophilic and thermophilic Bacillus sp.
Journal of Biotechnology, 30, 245-256.
http://dx.doi.org/10.1016/0168-1656(93)90117-6
[16] Olajuyigbe, F.M. and Ajele, J.O. (2005) Production dy-
namics of extracellular protease from Bacillus species.
African Journal of Biotechnology, 4, 776-779.
[17] Olajuyigbe, F.M. and Ajele, J.O. (2011) Thermostable
alkaline protease from Bacillus licheniformis LBBL-11
isolated from traditionally fermented African locust bean
(Parkia biglobosa). Journal of Food Biochemistry, 35,
1-10. http://dx.doi.org/10.1111/j.1745-4514.2010.00362.x
[18] Singh, S.K., Tripathi, V.R., Khare, S.K. and Garg, S.K.
(2011) Comparative one-factor-at-a-time, response sur-
face (statistical) and bench-scale bioreactor level optimi-
zation of thermoalkaline protease production from a psy-
chrotrophic Pseudomonas putida SKG-1 isolate. Micro-
bial Cell Factories, 10, 114.
http://dx.doi.org/10.1186/1475-2859-10-114
[19] Sepahy, A.A. and Jabalameli, L. (2011) Effect of culture
conditions on the production of an extracellular protease
by Bacillus sp. isolated from soil sample of Lavizan Jun-
gle Park. Enzyme Research, 2011, Article ID: 219628.
http://dx.doi.org/10.4061/2011/219628
[20] Gouda, M.K. (2006) Optimization and purification of
alkaline proteases produced by marine Bacillus sp. MIG
newly isolated from Eastern Harbour of Alexandria. Pol-
ish Journal of Microbiology, 55, 119-126.
[21] Nascimento, W.C.A. and Martins, M.L.L. (2004) Produc-
tion and properties of an extracellular protease from
thermophilic Bacillus sp. Brazilian Journal of Microbi-
ology, 35, 1-2.
http://dx.doi.org/10.1590/S1517-83822004000100015
[22] Bakermans, C. and Nealson, K.H. (2004) Relationship of
critical temperature to macromolecular synthesis and
growth yield in Psychrobacter cryopegella. Journal of
Bacteriology, 186, 2340-2345.
http://dx.doi.org/10.1128/JB.186.8.2340-2345.2004
[23] Chu, W.-H. (2007) Optimization of extracellular alkaline
protease production from species of Bacillus. Journal of
Industrial Microbiology and Biotechnology, 34, 241-245.
http://dx.doi.org/10.1007/s10295-006-0192-2
[24] Joshi, R.H., Dodia, M.S. and Singh, S.P. (2008) Produc-
tion and optimization of a commercially viable alkaline
protease from a haloalkaliphilic bacterium. Biotechnology
and Bioprocess Engineering, 13, 552-559.
http://dx.doi.org/10.1007/s12257-007-0211-9
[25] Abusham, R.A., Zaliha, R.N., Salleh, A.B. and Basri, M.
(2009) Optimization of physical factors affecting the
production of thermo-stable organic solvent-tolerant pro-
tease from a newly isolated halotolerant B. subtilis strain
Rand. Microbial Cell Factories, 8, 20.
http://dx.doi.org/10.1186/1475-2859-8-20
[26] Fang, H.H.P. and Liu, H. (2002) Effect of pH on hydro-
gen production from glucose by mixed culture. Biore-
source Technology, 82, 87-93.
http://dx.doi.org/10.1016/S0960-8524(01)00110-9
[27] Ellaiah, P., Srinivasulu, B. and Adinarayana, K. (2002) A
review on microbial alkaline proteases. Journal of Scien-
tific and Industrial Research, 61, 690-704.
[28] Zambare, V.P., Nilegaonkar, S.S. and Kanekar, P.P. (2004)
Production of an alkaline protease by Bacillus cereus
MCM B-326 and its application as a dehairing agent.
World Journal of Microbiology and Biotechnology, 23,
1569-1574.
http://dx.doi.org/10.1007/s11274-007-9402-y
[29] Mehrotra, S., Pandey, P.K., Gaur, R. and Darmwal, N.S.
(1999) The production of alkaline protease by a Bacillus
species isolate. Bior esou rce Technology, 67, 201-203.
http://dx.doi.org/10.1016/S0960-8524(98)00107-2
[30] Gupta, R., Beg, Q.K. and Lorenz, P. (2002) Bacterial
alkaline proteases: Molecular approaches and industrial
applications. Applied Microbiology and Biotechnology,
59, 15-32. http://dx.doi.org/10.1007/s00253-002-0975-y
[31] Wan, M.-Y., Wang, H-Y., Zhang, Y.-Z. and Feng, H.
(2009) Substrate specificity and thermostability of the
dehairing alkaline protease from Bacillus pumilus. Ap-
plied Biochemistry and Biotechnology, 159, 394-403.
http://dx.doi.org/10.1007/s12010-008-8497-4
[32] Ghorbel, B., Sellami-kamoun, A. and Nasri, M. (2003)
Stability studies of protease from Bacillus cereus BG1.
Enzyme and Microbial Technology, 32, 513-518.
http://dx.doi.org/10.1016/S0141-0229(03)00004-8
[33] Alexander, P.A., Ruan, B., Strausberg, S.L. and Bryan, P.
N. (2001) Cation-dependent stability of subtilisin. Bio-
chemistry, 40, 10640-10644.
http://dx.doi.org/10.1021/bi010798e
[34] Nilegaonkar, S.S., Zambare, V.P., Kanekar, P.P., Dhake-
phalkar, P.K. and Sarnaik, S.S. (2007) Production and
partial characterization of dehairing protease from Bacil-
lus cereus MCMB-326. Bioresource Technology, 98,
1238-1245.
http://dx.doi.org/10.1016/j.biortech.2006.05.003
[35] Rai, S.K., Roy, J.K. and Mukherjee, A.K. (2010) Charac-
terisation of a detergent-stable alkaline protease from a
novel thermophilic strain Paenibacillus tezpurensis sp.
nov. AS-S24-II. Applied Microbiology and Biotechnology,
85, 1437-1450.
http://dx.doi.org/10.1007/s00253-009-2145-y
[36] Hadj-Ali, N.E., Agrebi, R., Ghorbel-Frikha, B., Sellami-
Kamoun, A., Kanoun, S. and Nasri, M. (2007) Bio-
chemical and molecular characterization of a detergent
stable alkaline serine-protease from a newly isolated Ba-
cillus licheniformis NH1. Enzyme and Microbial Tech-
Copyright © 2013 SciRes. OPEN ACCESS