
A. MADROÑERO ET AL.
Open Access AMPC
298
Ministry of Finances and Competitivity (MINECO),
through the grant of the Consolider-Ingenio 2010 project
Nanotherm (CSD2010-00044).
REFERENCES
[1] S. Jaybhaye, M. Sharon, D. Sathiyamoorthy and K. Das-
gupta, “Semiconducting Carbon Nanofibers and Hydro-
gen Storage,” Synthesis and Reactivity in Inorganic, Metal-
Organic, and Nano-Metal Chemistry, Vol. 37, No. 6, 2007,
pp. 473-476.
http://dx.doi.org/10.1080/15533170701471729
[2] B. Panella, M. Hirscher and S. Roth, “Hydrogen Adsorp-
tion in Different Carbon Nanostructures,” Carbon, Vol.
43, No. 10, 2005, pp. 2209-2214.
http://dx.doi.org/10.1016/j.carbon.2005.03.037
[3] M. Molina-Sabio and F. Rodríguez-Reinoso, “Role of
Chemical Activation in the Development of Carbon Po-
rosity,” Colloids and Surfaces A: Physicochemical and
Engineering Aspects, Vol. 241, No. 1, 2004, pp. 15-25.
http://dx.doi.org/10.1016/j.colsurfa.2004.04.007
[4] A. Rejifu, H. Noguchi, T. Ohba, H. Kanoh, F. Rodriguez-
Reinoso and K. Kaneko, “Adsorptivities of Extremely
High Surface Area Activated Carbon Fibres for CH4 and
H2,” Adsorption Science and Technology, Vol. 27, No. 9,
2009, pp. 877-881.
http://dx.doi.org/10.1260/0263-6174.27.9.877
[5] F. Banhart, “Irradiation Effects in Carbon Nanostructures,”
Report on Progress in Physics, Vol. 62, No. 8, 1999, pp.
1181-1221. http://dx.doi.org/10.1088/0034-4885/62/8/201
[6] V. Skakalova, U. Dettlaff-Weglikowska and S. Roth,
“Gamma-Irradiated and Functionalized Single Wall Nano-
tubes,” Diamond and Related Materials, Vol. 13, No. 2,
2004, pp. 296-298.
http://dx.doi.org/10.1016/j.diamond.2003.11.003
[7] E. Papirer, S. Li, H. Balard and J. Jagiello, “Surface En-
ergy and Adsorption Energy Distribution Measurements
on Some Carbon Blacks,” Carbon, Vol. 29, No. 8, 1991,
pp. 1135-1143.
http://dx.doi.org/10.1016/0008-6223(91)90031-D
[8] A. Ansón, J. Jagiello, J. B. Parra, M. L. Sanjuán, Ana M.
Benito, W. K. Maser and M. T. Martinez, “Porosity, Sur-
face Area, Surface Energy, and Hydrogen Adsorption in
Nanostructured Carbons,” Journal of Physical Chemistry
B, Vol. 108, No. 40, 2004, pp. 15820-15826.
http://dx.doi.org/10.1021/jp047253p
[9] J. de Boor and V. Schmidt, “Complete Characterization
of Thermoelectric Materials by a Combined Van der
Pauw Approach,” Advanced Materials, Vol. 22, No, 38
2010, pp. 4303-4307.
http://dx.doi.org/10.1002/adma.201001654
[10] M. M. K. Salem, P. Braeuer, M. V. Szombathely, M.
Heuchel, P. Harting, K. Quitzsch and M. Jaroniec, “Ther-
modynamics of High-Pressure Adsorption of Argon, Ni-
trogen, and Methane on Microporous Adsorbents,” Lang-
muir, Vol. 14, No. 12, 1998, pp. 3376-3389.
http://dx.doi.org/10.1021/la970119u
[11] P. Malbrunot, D. Vidal, J. Vermesse, R. Chahine and T. K.
Bose, “Adsorption Measurements of Argon, Neon, Kryp-
ton, Nitrogen and Methane on Activated Carbon Up to
650 MPa,” Langmuir, Vol. 8, No. 2, 1992, pp. 577-580.
http://dx.doi.org/10.1021/la00038a044
[12] V. Jiménez, A. Ramírez-Lucas, P. Sánchez, J. L. Val-
verde and A. Romero, “Hydrogen Storage in Different
Carbon Materials: Influence of the Porosity Development
by Chemical Activation,” Applied Surface Science, Vol.
258, No. 7, 2012, pp. 2498-2509.
http://dx.doi.org/10.1016/j.apsusc.2011.10.080
[13] J. I. Langford and A. J. C. Wilson, “Scherresr after Sixty
Years: An Survey and Some New Results in the Deter-
mination of Crystalline Size,” Journal of Applied Cristal-
lography, Vol. 11, No. 2, 1978, pp. 102-113.
http://dx.doi.org/10.1107/S0021889878012844
[14] Z. Xu, L. Chen, L. Liu, X. Wu and L. Chen, “Structural
Changes in Multi-Walled Carbon Nanotubes Caused by
γ-Ray Irradiation,” Carbon, Vol. 49, No. 1, 2011, pp.
350-351. http://dx.doi.org/10.1016/j.carbon.2010.09.023
[15] C. Marliere, P. Poncharal, L. Vaccarini and A. Zahab,
“Effect of Gas Adsorption on the Electrical Properties of
Single Walled Carbon Nanotubes Mats,” International
Materials Reviews, Vol. 593, 2000, pp. 173-176.