B. LI, H. L. JIN

Open Access APM

669

[7] W. E. Clark, “Twisted Matrix Units Semigroup Alge-

bras,” Duke Mathematical Journal, Vol. 34, No. 3, 1967,

pp. 417-423.

http://dx.doi.org/10.1215/S0012-7094-67-03446-1

Lemma2.8, R*G is p.q.-Baer.

Corollary 3.2 Let R be a semiprime ring with a finite

group G of X-outer ring automorphisms of R. If R is

p.q.-Baer, then R*G is p.q.-Baer. [8] A. Pollingher and A. Zaks, “On Baer and Quasi-Baer

Rings,” Duke Mathematical Journal, Vol. 37, No. 1, 1970,

pp. 127-138.

http://dx.doi.org/10.1215/S0012-7094-70-03718-X

Proof. The proof follows immediately by Theorem

3.1.

4. Conclusion [9] G. F. Birkenmeier, “Idempotents and Completely Semi-

prime Ideals,” Communications in Algebra, Vol. 11, No.

6, 1983, pp. 567-580.

http://dx.doi.org/10.1080/00927878308822865

In [16] researched quasi-Baer property of skew group

rings under finite group actions on a semiprime ring and

their applications to C*-algebras (see also [17,18]). In

this paper, we investigate the right p.q.-Baer property of

skew group rings under finite group action. Assume

that is a semiprime ring with a finite group G of

X-outer ring automorphisms of R, then 1) R*G is

p.q.-Baer if and only if R is G-p.q. -Baer; 2) ifis

p.q.-Baer, then R*G is p.q.-Baer.

R

R

[10] T. Y. Lam, “Lectures on Modules and Rings,” Springer,

Berlin, 1998.

[11] J. W. Fisher and S. Montgomery, “Semiprime Skew Group

Rings,” Journal of Algebra, Vol. 52, No. 1, 1978, pp.

241-247. http://dx.doi.org/10.1016/0021-8693(78)9027 2-7

[12] S. Montgomery, “Outer Automorphisms of Semi-Prime

Rings,” Journal London Mathematical Society, Vol. 18,

No. 2, 1978, pp. 209-220.

http://dx.doi.org/10.1112/jlms/s2-18.2.209

REFERENCES [13] K. Louden, “Maximal Quotient Rings of Ring Extensions,”

Pacific Journal of Mathematics, Vol. 62, 1976, pp. 489-

496.

[1] G. F. Birkenmeier, J. Y. Kim and J. K. Park, “Principally

Quasi-Baer Rings,” Communications in Algebra, Vol. 29,

No. 2, 2001, pp. 639-660.

http://dx.doi.org/10.1081/AGB-100001530 [14] J. Osterburg and J. K. Park, “Morita Contexts and Quo-

tient Rings of Fixed Rings,” Houston Journal of Mathe-

matics, Vol. 10, 1984, pp. 75-80.

[2] G. F. Birkenmeier, H. E. Heatherly, J. Y. Kim and J. K.

Park, “Triangular Matrix Representations,” Journal of

Algebra, Vol. 230, No. 2, 2000, pp. 558-595.

http://dx.doi.org/10.1006/jabr.2000.8328

[15] G

. F. Birkenmeier, J. K. Park and S. T. Rizvi, “Princi-

pally Quasi-Baer Ring Hulls: in Advances in Ring The-

ory,” In: D. V. Huynh and S. R. López-Permouth, Tends

in Math., Birkhauser, Boston, 2010, pp. 47-61.

http://dx.doi.org/10.1007/978-3-0346-0286-0_4

[3] G. F. Birkenmeier, J. Y. Kim and J. K. Park, “Quasi-Baer

Ring Extensions and Biregular Rings,” Bulletin of the

Australian Mathematical Society, Vol. 61, No. 1, pp. 39-

52. [16] H. L. Jin, J. Doh and J. K. Park, “Group Actions on

Quasi-Baer Rings,” Canadian Mathematical Bulletin, Vol.

52, 2009, pp. 564-582.

http://dx.doi.org/10.4153/CMB-2009-057-6

[4] G. F. Birkenmeier, J. Y. Kim and J. K. Park, “A Sheaf

Representation of Quasi-Baer Rings,” Journal of Pure

and Applied Algebra, Vol. 146, No. 3, 2000, pp. 209-223.

http://dx.doi.org/10.1016/S0022-4049(99)00164-4 [17] G. F. Birkenmeier, J. K. Park and S. T. Rizvi, “Hulls of

Semiprime Rings with Applications to C* Algebras,”

Journal of Algebra, Vol. 322, No. 2, 2009, pp. 327-352.

http://dx.doi.org/10.1016/j.jalgebra.2009.03.036

[5] G. F. Birkenmeier and J. K. Park, “Triangular Matrix Re-

presentations of Ring Extensions,” Journal of Algebra,

Vol. 265, No. 2, 2003, pp. 457-477.

http://dx.doi.org/10.1016/S0021-8693(03)00155-8 [18] G. F. Birkenmeier, J. K. Park and S. T. Rizvi, “The Struc-

ture of Rings of Quotients,” Journal of Algebra, Vol. 321,

No. 9, 2009, pp. 2545-2566.

http://dx.doi.org/10.1016/j.jalgebra.2009.02.013

[6] G. F. Birkenmeier, J. Y. Kim and J. K. Park, “Polynomial

Extensions of Baer and Quasi-Baer Rings,” Journal of

Pure and Applied, Vol. 159, No. 1, 2001, pp. 25-42.

http://dx.doi.org/10.1016/S0022-4049(00)00055-4