• B. L. J. Gysen, J. L. G. Janssen, J. J. H. Paulides and E. A. Lomonova, “Design Aspects of an Active Electromagnetic Suspension System for Automotive Applications,” IEEE Transactions on Industry Applications, Vol. 45, No. 5, 2009, pp. 1589-1597. doi:10.1109/TIA.2009.2027097
  • A. Gupta, J. A. Jendrzejczyk, T. M. Mulcahy and J. R. Hull, “Design of Electromagnetic Shock Absorber,” International Journal of Mechanics and Materials in Desigh, Vol. 3, No. 3, 2006, pp. 285-291.
  • L. Zuo, B. Scully, J. Shestani and Y. Zhou, “Design and Characterization of an Electromagnetic Energy Harvester for Vehicle Suspensions,” Smart Materials and Structures, Vol. 19, No. 4, 2010, Article ID: 045003. doi:10.1088/0964-1726/19/4/045003
  • R. Rajamani and J. K. Hedrick, “Performance of Active Automotive Suspensions with Hydraulic Actuator: Theory and Experiment,” Proceedings of the American Control Conference, Baltimore, June 1994, pp. 1214-1218.
  • S. N. Avadhany, “Analysis of Hydraulic Power Transduction in Regenerative Rotary Shock Absorbers as Function of Working Fluid Kinematic Viscosity,” Massachusetts Institute of Technology, Cambridge, 2009.
  • Levant Power Corporation, “Levant Power: Revolutionary Genshock Technology,” Product Catalogue. www.levanpower.com
  • Bose Company, “Bose Suspension System-White Paper,” 2004. http://www.bose.com
  • L. Pickelmann, “Low Voltage Co-Fired Multilayer Stack, Rings and Chips for Actuation,” Piezomechanik, Munich, 2004. www.piezomechanik.com
  • M. Arizti, “Harvesting Energy from Vehicle Suspension,” Master of Science Thesis, Tampere University of Technology, Tampere, 2010.
  • J.-F. Saillant, S. Cochran, S. Ballandras, R. Berriet and G. Fleury, “Theoretical Effect of Epoxy Interlayer Bonds in Multilayer Piezoelectric Transducers,” IEEE Ultrasonics Symposium, Paisley, 28-31 October 2007, pp. 191-194. doi:10.1109/ULTSYM.2007.59
  • Y.-J. Luo, M.-L. Xu and X.-N. Zhang, “Modeling and Simulation of a New Piezoelectric Stack Actuator with Bi-Direction Outputs,” IEEE Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), Xi’an, 10-13 December 2010, pp. 290-295.
  • X. Li, M.-S. Guo and S.-X. Dong, “A Flex-Compressive-Mode Piezoelectric Transducer for Mechanical Vibration/Strain Energy Harvesting,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 58, No. 4, 2011, pp. 698-703. doi:10.1109/TUFFC.2011.1862
  • J. Feenstra, J. Granstrom and H. Sodano, “Energy Harvesting through a Backpack Employing a Mechanically Amplified Piezoelectric Stack,” Mechanical Systems and Signal Processing, Vol. 22, No. 3, 2008, pp. 721-734. doi:10.1016/j.ymssp.2007.09.015
  • Nomenclature:

    A: piezoelectric frontal area (m2)

    Ar: rubber frontal area (m2)

    C: capacitance (F)

    d33: piezoelectric charge constant (C/N)

    Er: rubber modulus of elasticity (N/m2)

    Fm(t): mechanical force (N)

    Fe(t): electrical force (N)

    : inertia force of the pusher (N)

    Fr : rubber force (N)

    : inertia force of the ML PZT

    : stiffness force of the ML PZT

    Hs: peak gain of sprung mass without VEH mechanism

    Hus: peak gain of unsprung mass without VEH mechanism Hs_m: peak gain of sprung mass with VEH mechanism

    Hus_m: peak gain of unsprung mass with VE mechanism Kr: rubber stiffness constant (N/m)

    : total thickness PZT (m)

    : rubber mass (kg)

    : ML PZT mass (kg)

    n: number of PZT layer

    : power (watt)

    P: power without VEH mechanism (watt)

    P_m: power with VEH mechanism (watt)

    Q: electric charge (C)

    R: resistance (ohm)

    : rubber thickness (m)

    t: PZT thickness (m)

    : displacement of ML PZT(m)

    : voltage (volt)

    V: voltage without VEH mechanism (volt)

    V_m: voltage with VEH mechanism (volt)

    : young’s modulus of PZT (N/m2)

    : displacement of pusher (m)

    : deflection of rubber (m)

    : excitation frequency (rad/s)

    Journal Menu >>