, Vol. 21, No. 11, 1996, pp. 1469- 1488. doi:10.1007/BF02532387
  • W. Wittmann, E. Schunk, I. Rosskothen, S. Gaburro, N. Singewald, H. Herzog and C. Schwarzer, “ProdynorphinDerived Peptides Are Critical Modulators of Anxiety and Regulate Neurochemistry and Corticosterone,” Neuropsychopharmacology, Vol. 34, No. 3, 2009, pp. 775-785. doi:10.1038/npp.2008.142
  • T. Esch and G. B. Stefano, “The Neurobiology of Stress Management,” Neuro Endocrinology Letters, Vol. 31, No. 1, 2010, pp. 19-39.
  • S. Ide, I. Sora, K. Ikeda, M. Minami, G. R. Uhl and K. Ishihara, “Reduced Emotional and Corticosterone Responses to Stress in Mu-Opioid Receptor Knockout Mice,” Neuropharmacology, Vol. 58, No. 1, 2010, pp. 241-247. doi:10.1016/j.neuropharm.2009.07.005
  • M. A. Wilson and L. Junor, “The Role of Amygdalar Mu-Opioid Receptors in Anxiety-Related Responses in Two Rat Models,” Neuropsychopharmacology, Vol. 33, No. 12, 2008, pp. 2957-2968. doi:10.1038/sj.npp.1301675
  • F. Lopez, L. G. Miller, M. L. Thompson, A. Schatzki, S. Chesley, D. J. Greenblatt and R. I. Shader, “Chronic Morphine Administration Augments Benzodiazepine Binding and GABAA Receptor Function,” Psychopharmacology (Berl), Vol. 101, No. 4, 1990, pp. 545-549. doi:10.1007/BF02244235
  • J. Le Merrer, B. Cagniard and P. Cazala, “Modulation of Anxiety by Mu-Opioid Receptors of the Lateral Septal Region in Mice,” Pharmacology Biochemistry and Behavior, Vol. 83, No. 3, 2006, pp. 465-479. doi:10.1016/j.pbb.2006.03.008
  • A. Rezayof, S. S. Hosseini and M. R. Zarrindast, “Effects of Morphine on Rat Behaviour in the Elevated Plus Maze: The Role of Central Amygdala Dopamine Receptors,” Behavioural Brain Research, Vol. 202, No. 2, 2009, pp. 171-178. doi:10.1016/j.bbr.2009.03.030
  • P. Zeman, M. Alexandrová and R. Kvetnansky, “Opioid Mu and Delta and Dopamine Receptor Number Changes in Rat Striatum during Stress,” Endocrinologia Experimentalis, Vol. 22 No. 1, 1988, pp. 59-66.
  • I. Liberzon, S. F. Taylor, K. L. Phan, J. C. Britton, L. M. Fig, J. A. Bueller, R. A. Koeppe and J. K. Zubieta, “Altered Central Micro-Opioid Receptor Binding after Psychological Trauma,” Biological Psychiatry, Vol. 61, No. 9, 2007, pp. 1030-1038. doi:10.1016/j.biopsych.2006.06.021
  • G. F. Koob, H. O. Pettit, A. Ettenberg and F. E. Bloom, “Effects of Opiate Antagonists and Their Quaternary Derivatives on Heroin Self-Administration in the Rat,” Journal of Pharmacology and Experimental Therapeutics, Vol. 229, No. 2, 1984, pp. 481-486.
  • R. D. Egleton, T. J. Abbruscato, S. A. Thomas and T. P. Davis, “Transport of Opioid Peptides into the Central Nervous System,” Journal of Pharmaceutical & Science, Vol. 87, No. 11, 1998, pp. 1433-1439. doi:10.1021/js980062b
  • K. Shinoda, V. J. Hruby and F. Porreca, “Antihyperalgesic Effects of Loperamide in a Model of Rat Neuropathic Pain Are Mediated by Peripheral Delta-Opioid Receptors,” Neuroscience Letters, Vol. 411, No. 2, 2007, pp. 143-146. doi:10.1016/j.neulet.2006.10.027
  • S. K. Sudakov, I. V. Rusakova, M. M. Trigub and I. A. Pomytkin, “Methylnaloxone Suppresses the Development of Withdrawal Syndrome in Morphine-Dependent Rats,” Bulletin of Experimental Biology and Medicine, Vol. 143, No. 5, 2007, pp. 608-610. doi:10.1007/s10517-007-0194-8
  • S. K. Sudakov, S. V. Sotnikov, N. Yu. Chekmareva, A. A. Kolpakov, Yu. A. Chumakova and A. E. Umryukhin, “Changes in β-Endorphin Level in the Cingulate Cortex in Rats after Peripheral Loperamide and Methylnaloxone Administration at Rest and during Emotional Stress,” Bulletin of Experimental Biology and Medicine, Vol. 149, No. 2, 2010, pp. 167-169. doi:10.1007/s10517-010-0898-z
  • S. K. Sudakov and M. M. Trigub, “Hypothesis on Reciprocal Interactions between the Central and Peripheral Components of the Endogenous Opioid System,” Bulletin of Experimental Biology and Medicine, Vol. 146, No. 6, 2008, pp. 663-666. doi:10.1007/s10517-009-0368-7
  • S. K. Sudakov, V. G. Bashkatova, A. A. Kolpakov and M. M. Trigub, “Peripheral Administration of Loperamide and Methylnaloxone Decreases the Degree of Anxiety in Rats,” Bulletin of Experimental Biology and Medicine, Vol. 149, No. 3, 2010, pp. 273-275. doi:10.1007/s10517-010-0925-0
  • H. Fischer, R. Gottschlich and A. Seelig, “Blood-Brain Barrier Permeation: Molecular Parameters Governing Passive Diffusion,” Journal of Membrane Biology, Vol. 65, No. 3, 1998, pp. 201-211. doi:10.1007/s002329900434
  • G. Paxinos and C. Watson, “The Rat Brain in Stereotaxic Coordinates,” Academic Press, New York, 1982, p. 474.
  • S. R. Wachtel and F. J. White, “Electrophysiological Effects of BMY 14802, a New Potential Antipsychotic Drug, on Midbrain Dopamine Neurons in the Rat: Acute and Chronic Studies,” Journal of Pharmacology and Experimental Therapeutics, Vol. 244, No. 1, 1988, pp. 410- 416.
  • H. S. Sharma and S. F. Ali, “Alterations in Blood-Brain Barrier Function by Morphine and Methamphetamine,” Annals of the New York Academy of Sciences, Vol. 1074, 2006, pp. 198-224. doi:10.1196/annals.1369.020
  • J. J. Lochhead, G. McCaffrey, C. E. Quigley, J. Finch, K. M. Demarco, N. Nametz and T. P. Davis, “Oxidative Stress Increases Blood-Brain Barrier Permeability and Induces Alterations in Occludin during Hypoxia-Reoxygenation,” Journal of Cerebral Blood Flow & Metabolism, Vol. 30, No. 9, 2010, pp. 1625-1636. doi:10.1038/jcbfm.2010.29
  • NOTES

    *Corresponding author.

    Journal Menu >>