X. LI, S. P. QIAN

6

and feasibility of the proposed chaos and hyperchaos

controlling Scheme.

5. Acknowledgements

The authors are grateful to the reviewers for their valu-

able comments and suggestions.

REFERENCES

[1] E. Ott, C. Grebogi and J. A. York, “Controlling Chaos,”

Physical Review Letters, Vol. 64, No. 11, 1990, pp. 1196-

1199.

[2] D. Liu, L. Liu and Y. Yang, “H∞ Control of Discrete-

Time Singularly Perturbed Systems via Static Output

Feedback,” Abstract and Applied Analysis, Vol. 2013,

2013, Article ID: 528695.

[3] Z. Wang, H. T. Zhao and X. Y. Kong, “Delayed Feed-

back Control and Bifurcation Analysis of an Autonomy

System,” Abstract and Applied Analysis, Vol. 2013, 2013,

Article ID: 167065.

[4] G. R. Chen and J. H. LU, “Dynamic Analysis, Control

and Synchronization of Lorenz System,” Science Pub-

lishing Company, Beijing, 2003.

[5] B. Peng, V. Petro and K. Showalter, “Controlling Chemi-

cal Chaos,” The Journal of Physical Chemistry, Vol. 95,

No. 13, 1991, pp. 4957-4961.

http://dx.doi.org/10.1021/j100166a013

[6] H. Salarieh and A. Alasty, “Control of Stochastic Chaos

Using Sliding Mode Method,” Journal of Computational

and Applied Mathematics, Vol. 225, No. 1, 2009, pp.

135-145. http://dx.doi.org/10.1016/j.cam.2008.07.032

[7] K. Pyragas, “Continuous Control of Chaos by Self-Con-

trolling Systems,” Physical Letter A, Vol. 170, No. 6,

1992, pp. 421-428.

http://dx.doi.org/10.1016/0375-9601(92)90745-8

[8] E. H. Abed, H. O. Wang and R. C. Chen, “Stabilization of

Period Doubling Bifurcations and Implications for Con-

trol of Chaos,” Physica D, Vol. 70, No. 1-2, 1994, pp.

154-164.

http://dx.doi.org/10.1016/0167-2789(94)90062-0

[9] K. A. Mirus and J. C. Sprott, “Controlling Chaos in Low-

and High-Dimensional Systems with Periodic Parametric

Perturbations,” Physical Review E, Vol. 59, No. 5, 1999,

pp. 5313-5324.

http://dx.doi.org/10.1103/PhysRevE.59.5313

[10] X. Li, Y. Chen and Z. B. Li, “Function Projective Syn-

chronization of Discrete-Time Chaotic Systems,” Zeit-

schrift für Naturforschung Section A—A Journal of Phy-

sical Scienses, Vol. 63, No. 1-2, 2008, pp. 7-14.

[11] L. Yang, Z. R. Liu and J. M. Mao, “Controlling Hyper-

chaos,” Physical Review Letters, Vol. 84, No. 1, 2000, pp.

67-70. http://dx.doi.org/10.1103/PhysRevLett.84.67

[12] S. L. Bu, S. Q. Wang and H. Q. Ye, “Stabilizing Unstable

Discrete Systems,” Physical Review E, Vol. 64, 2001, Ar-

ticle ID: 046209.

[13] X. Li and Y. Chen, “Stabilizing of Two-Dimensional

Discrete Lorenz Chaotic System and Three-Dimensional

Discrete Rössler Hyperchaotic System,” Chinese Physics

Letters, Vol. 26, No. 9, 2009, Article ID: 090503.

[14] M. Itoh, T. Yang and L. O. Chua, “Conditions for Impul-

sive Synchronization of Chaotic and Hyperchaotic Sys-

tems,” International Journal of Bifurcation and Chaos,

Vol. 11, No. 2, 2001, pp. 551-560.

http://dx.doi.org/10.1142/S0218127401002262

[15] X. Y. Wang, “Chaos in Complex Nonlinear Systems,”

Publishing House of Electronics Industry, Beijing, 2003.

Open Access AM