W. S. ZHANG, Y. Y. DAI

Copyright © 2013 SciRes. AJCM

26

4. Conclusions

A new wave simulation technique for the elastic wave

equation in the frequency domain is investigated. It is

based on the no overlapping domain decomposition

method. The computational difference schemes and the

corresponding algorithm of domain decomposition are

presented. The numerical computations both for a ho-

mogeneous model and a three-layered model show the

effectiveness of our proposed method. This method can

be used in the full-waveform inversion. It can sometimes

reduce the computational complexity.

5. Acknowledgements

This research is supported by the State Key project with

grant number 2010 CB731505 and the Foundation of Na-

tional Center for Mathematics and Interdisciplinary Sci-

ences, CAS. The computations are implemented in the

State Key Lab. of Sci. and Eng. Computing (LSEC).

REFERENCES

[1] A. Bayliss, C. I. Goldstein and E. Turkel, “The Numerical

Solution of the Helmholtz Equation for Wave Propaga-

tion Problmes in Underwater Acoustics,” Computers and

Mathematics with Applications, Vol. 11, No. 7-8, 1985,

pp. 655-665. doi:10.1016/0898-1221(85)90162-2

[2] R. E. Plexxis, “A Helmholtz Iterative Solver for 3D Seis-

mic-imaging Problems,” Geophysics, Vol. 72, No. 5 2007,

pp. SM185-SM197. doi:10.1190/1.2738849

[3] F. Ihlenburg and I. Babuska, “Finite Element Solution of

the Helmholtz Equation with High Wave Number. Part I:

The H-version of the FE M,” Computers and Mathematics

with Applications, Vol. 30, No. 9, 1995, pp. 9-37.

doi:10.1016/0898-1221(95)00144-N

[4] F. Ihlenburg and I. Babuska, “Finite Element Solution of

the Helmholtz Equation with High Wave Number. Part II:

The Hp-version of the FEM,” SIAM Journal on Numeri-

cal Analysis, Vol. 34, No. 1, 1997, pp. 315-358.

doi:10.1137/S0036142994272337

[5] A. Bayliss, C. I. Goldstein and E. Turkel, “An Iterative

Method for the Helmholtz Equation,” Journal of Compu-

tational Physics, Vol. 49, No. 3, 1983, pp. 443-457.

doi:10.1016/0021-9991(83)90139-0

[6] Y. A. Erlangga, “Advances in Iterative Methods and Pre-

Conditioners for the Helmholtz Equation,” Archives of

Computational Methods in Engineering, Vol. 15, No. 1

2008, pp. 37-66. doi:10.1007/s11831-007-9013-7

[7] T. F. Chan and T. P. Mathew, “Domain Decomposition

Algorithms,” Acta Numerica, Vol. 3, 1994, pp. 61-143.

doi:10.1017/S0962492900002427

[8] A. Tosseli and O. Widlund, “Domain Decomposition

Methods-Algorithms and Theory,” Springer, Berlin,

2005.

[9] J. Xu, “Iterative Methods by Space Decomposition and

Subspace Correction,” SIAM Review, Vol. 34, No. 4,

1992, pp. 581-613. doi:10.1137/1034116

[10] J. Xu and J. Zou, “Some Nonoverlapping Domain De-

composition Methods,” SIAM Review, Vol. 40, No. 4,

1998, pp. 857-914. doi:10.1137/S0036144596306800

[11] C. Cerjan, D. Kosloff, R. Kosloff and M. Reshef, “A

Non-reflecting Boundary Condition for Discrete Acoustic

and Elastic Wave Equations,” Geophysics, Vol. 50, No. 4,

1985, pp. 705-708. doi:10.1190/1.1441945

[12] R. Clayton and B. Engquist, “Absorbing Boundary Con-

ditions for Acoustic and Elastic Wave Equations,” Bulle-

tin of the Seismological Society of America, Vol. 67, No.

6, 1977, pp. 1529-1540.

[13] J. P. Berenger, “A Perfectly Matched Layer for Absorb-

ing of Electromagnetic Waves,” Journal of Computa-

tional Physics, Vol. 114, No. 2, 1994, pp. 185-200.

doi:10.1006/jcph.1994.1159

[14] S. Kim, “Domain Decomposition Iterative Procedures for

Solving Scalar Waves in the Frequency Domain”, Nu-

merische Mathematik, Vol. 79, No. 2, 1998, pp. 231-259.

doi:10.1007/s002110050339

[15] S. Larsson, “A Domain Decomposition Method for the

Helmholtz Equation in a Multilayer Domain,” SIAM

Journal on Scientific Computing, Vol. 20, No. 5, 1999, pp.

1713-1731. doi:10.1137/S1064827597325323

[16] F. Magoulès, F. X. Roux and S. Salmon, “Optimal Dis-

crete Transmission Conditions for a Nonoverlapping

Domain Decomposition Method for the Helmholtz Equa-

tion,” SIAM Journal on Scientific Compting, Vol. 25, No.

5, 2004, pp. 1497-1515.

doi:10.1137/S1064827502415351

[17] Y. A. Erlangga, C. Vuik and C. W. Oosterlee, “On a

Class of Preconditioners for Solving the Helmholtz Equa-

tion,” Applied Numerical Mathematics, Vol. 50, No. 3-4,

2003, pp. 409-425. doi:10.1016/j.apnum.2004.01.009

[18] T. Airaksinen, E. Heikkola, A. Pennanen and J. Toivanen,

“An Algebraic Multigrid based Shifted-Laplacian P[e-

conditioner for the Helmholtz Equation,” Journal of

Computational Physics, Vol. 226, No. 1, 2007, pp.

1196-1210.doi:10.1016/j.jcp.2007.05.013