Journal of Applied Mathematics and Physics, 2013, 1, 65-70
Published Online November 2013 (http://www.scirp.org/journal/jamp)
http://dx.doi.org/10.4236/jamp.2013.15010
Open Access JAMP
The Modified Heinz’s Inequality
Takashi Yoshino
Mathematical Institute, Tohoku University, Sendai, Japan
Email: yoshi no@math.tohoku.ac.jp
Received August 23, 2013; revised September 24, 2013; accepted September 28, 2013
Copyright © 2013 Takashi Yoshino. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
ABSTRACT
In my paper [1], we aimed to determine the best possible range of
such that the modified Heinz’s inequality
()(AAA ABA)
 
holds for any bounded linear operators
A
and on a Hilbert space such as
and for any given
B
some 0AB I

 
and
such as 0
and 0
. But the counter-examples pre-
pared in [1] and also in [2] were not sufficient and, in this paper, we shall constitute the sufficient counter-examples
which will satisfy all the lacking parts.
Keywords: Heinz’s Inequality
By the same way as in the proof of Theorem ([1]), we
have the following.
Lemma For any ,,,abx
and such as
1 0,0,0ab xa   and

0Oa
 b
where )(
O is a function of such that
0
lim O is
bounded, let


0
and .
0
aab x
AB
b
ab b


 





 

If

AAA ABA
 
for any real numbers
,
and
such as 0
and 0
, then we have
the following inequality (1).
Theorem ([1]) The region of
such that the opera-
tor inequality

AAA ABA
 
holds for any bounded linear operators
A
and on a
Hilbert space such as B
som
eAB I 0
and
for any given
and
such as 0
and 0
is as follows:
1) 010, 1
,
 
2) 011, 2

 
11
max,min 0,
222 11










3) 1
012

,
, 0
4) 012,




21
max 2121
21
min ,


,
2121

 







1,0
and 5) 1

,

1
x0, 21

ma









 



22 22
2220
21 222
2
2
22
lim
()
.
axbabxb ab
b
xb axb
aabbax
bax

  
 
    
 






(1)
T. YOSHINO
66
Proof Since the sufficiency of our range for the modi-
fied Heinz’s inequality is already proved in [1], we have
only to constitute counter-examples of
A
and in
the outside of our ranges.
For any
B
,,,abx
and such as in Lemma, let


0
and 0
x
b
ab b







 


.
Let

aa
AB

b


1aa aba
xb

 
1
,0
1by
b b

a
,
and 1
b
a
. Then we have
A
BbI because
0,abxbyb
 ,
 



11 0
11
aaab babaab a
ax ab ab
 1
 
 
ecause

and b











1
1
11
1
11
1
ax ab
bx ax
abxaxb
a
0.
aa xab
abaayab
a













Also if
b
, then, by multiply-
ing

1
2
bax
 
lity (1) in Lemma, we h


to the both sides of the ine-
quaave

AAA ABA
 
 


22
21
222
1
1
1
aby ab
b
a
ay b
y


 


 


2122 22
2
22
aabbay
abybay
  

 

 (2)
 


212222
2
22
=1
aab aby
aby ab y
 

 
 



(3)



22
22
2
22
1
1
aa bbay
abyb ay

2
 
 

 


(4)
 


2122 22
.
bbay
  

(5)
2
aa
ay
 
 
 
Let
22
1ab
y b
 
1, 01xaba
  and 1a
. Then
we have
A
BbI
0,
aba x because
1b
  and because
 


11 0.
axabbx ax
bb


 

 

Also if

AAA ABA
 

1
ax

, then, by m
ing
ultiply-

to the both sides of the inequality (1)
in Lemma, we have the following inequality


 


 




22
22
222
21222 2
2
22
1
1
1
.
1
ba bab
b
ba
ba
b
aabba
aba
 
 
 
 
 

 




y multiplyi
(6)
And, bng b

22 1


to the both sides of
ality, we the above inequhave


 










122
2121
222
2 2
2
11
1
1
1
11
bbab ab
b
a
ba
b
ab b
a






  

 

21 22
22.
11
a a
b
a
 





(7)
Let

2and 0xb
. Then we have 2
A
BbI
Open Access JAMP
T. YOSHINO 67
because 2
0
x
bba 

ab b 

AAA
and because
Also if
 
0ax x
.
ABA

e both sides


22 1
b

 
to th
a, we have the

, then, by m
plying of the inequality
(1) in Lemmfollowing inequality
ulti-

 

21
222
2
11abbba

 





2
22
22
2
22
1
11 .
b
ba
ba
ba

 
 
 
 
21 2 2
1
1
b
aa
b
 




(8)
For
2
, let
1
1
0b2


 . Then
1
11
0bb 2
because 1
01
1
.
And let

1
1
1
1
2
a
b
11,
1
bb



  
11
1
0
1
xb b ybby
ab







 and
1
1aa




0
. Then we have
A
BxI because
 



 

211
11
11
11
11
11
11
11
1
11
1
11
1
12 10,
1
babbaba
bx ab
babbb ba
ab
babbba
ab
bbabb
ab









 
 
 
 
 
 
 

 

 
 

 


 


 

 


 

 



11
1
11
11
1
11
0
1
aaab baba
ax ab
abaab b
ab





 
 
 

 
 
 

and because
 
0axab bx
 .
Also if

AAA ABA
 
, then, by Lemma,
we have the following inequality








 



11
22 22
11
21
122
1
1
1
22 2
21
2
1
22
1
abbybbbybab
abby b
bbyb
aabbabby
aby
 
 

 


 
 


 
 
 













21
bb







.
Since
 
11
11,b bybbbyb






 



2
1
 
112
2
22 2
111 ,babbybb aby


 




 






1
221
2
12
12
1
babby
bb aby
 
 

 











12
22
11
 


 



,

and since by
multiplying
2
1
b
to the both sides of the ab
ve, for
ove
inequality, we ha1
1
2, 02
b



 and

1
1
1
bb

1
1
1
12
a
b

,
Open Access JAMP
T. YOSHINO
68









2
12
1
1
2
2
1
2
22
1
22
21
21
2
222
1
22
22
1
1
ab byb
by b
byba b
aby b
a
baby
ab
b

 





 






































2.aby







and, if
(9)
Case 1 Let 0,1,0

 .
Then







22
21
222
21
2
1
lim 1
1
21
2
1
aby ab
b
a
ay b
b


 










because
2
ay



1aa
lim lim2
1
aa
yab
  and
 



212
222
2
22
lim .
1
a
aababy
abyab y
  
 

 



This contradicts (3).
Case 2 Let 01,0,


.
Then








22
21
222
21
2
1
lim 1
1
21
21
a
aby ab
b
a
ay b
y
b


 









because
If
lim 2
ay
 .
20
, then we have




22
22
2
22
1
lim 0
1
a
aa bbay
abybay


 



20
, then we have also









2122 22
2
22
lim 1
0,2 10
,210 0
,21 0
a
a abbay
abybay
b
 

 




 



 
 

and hence, by (4) and (5), we have and
this contradicts the fact that all
21 0
 
21 0
  for
1
. 1
0, ,

Case 3 Let 0

.
Then





22
21
222
2
1
lim 1
1
21
a
aby ab
b
a
ay b
y







and



212 222
2
22
2
lim 1
12
12
a
aababy

ab
y ab y
 
 


 


because lim 2
ay

.
, we have By (3)021



0

and this contradicts
the fact that 21

 for all 1
.
Case 4

1
1,0 1,0 max0,
21

 





Let

1
021


Then and and
hence

21 1

 
221

0
.
fore we have There


 

22
221
222
01
b
1
lim 0
1
bb abab
b
a
ba
b
 
 
 








and
 

 
2



21222 2
2
022
lim 1
0.
1
b
aabba
aba
a
 

  


This contradicts (6).
2
a


2



Open Access JAMP
T. YOSHINO 69
Case 5 Let 01,1
 ,

21
max ,
2121



 





In this case
Then, in the case where
 
 
21max1, 0
d21 max1,0
and he n cbec ause1.
 
 


an
e20


1
02
 , we have

21

and hence
21 0

 . Therefore
we have







22
22
222
22
2
1
lim 1
1
1
1
a
ba bab
b
ba
ba
b
bb
b
b
b
 

 















and




 
212 22
aab a
 
 
2
2
22
lim 1
a
b
aba




ontradicts (6).
And, in the case where
.
This c11
2
 , we have

21
21

and hence
Therefore we have

212 10

 .






2121
2
0
122
22
lim 1
11 0
1
1
b
b
b
bbab ab
a
ba



  









and
 


212222
2
11
11
1
b ba
a
 


 



This contradicts (7).
Let
2
02
bab
a
21 0.
a


lim aa
Case 61
01,12,2

 .
Then 0212


 
2 2120
 
21
 
 .
e And, by (8), we hav


 







21

212
2
2
0
22
22
21 22
2
022
2
2
0lim 1
11
1
lim 1
1
1
0
b
b
abb
b
bab
ab
aab
ab
ab

 

 
  
 


 







a


and this is a contradiction.
Case 7 Let

1
01,1,
21

 
0
 
.
Then
 
1
1
212111



0
 

and 20
because 1
.
Therefore we have


 

22
221 1
m 0
bb aab
b

 





22
2
0
li 1
1
b
b
a
ba
b
 


and


 

212222
2
022
22
lim 1
0.
1
b
aabba
aba
a
a
 

 

  



 
This contradicts (6).
se 8 Let Ca

2
01,2,
21

 
0
 
.
2
22
1
 
0

. Then
Since
 

11aa
1
lim lim1
1
aa
bybab







and since
10blim
a
in the case where

1
,
2
11
1
1
11
2, 01
12
bb
ba
b


 
because
12
11
1
1
11
11
1
10
12 12
bb
bb
a
bb








,


and
Open Access JAMP
T. YOSHINO
Open Access JAMP
70
we have





2
12
1
1
2
12
1
2
22
1
22
21
lim
1
0
a
ab byb
by b
byba b
aby b

 






























and


 


21 22
2
12
lim
a22
1
1.
aab
ba
by
baby
22
12















completed the proof of the best pos-
sianges in our theorem.
REFERENCES
[1] T. Yoshino, “A Modified Heinz’s Inequality,” Linear
bra and its Applications, Vol. 420, p.
http://dx.doi.org/10.1016/j.laa.2006.08
This contradicts (9).
Therefore we
bility of the r
Alge No. 2-3, 2007, p
686-699. .031





[2] T. Yssible Range of a Modified
Heinz’s Ine quality ,” International Journal of Funct. Anal.
Oper. Theory Appl., Vol. 3, No. 1, 2011, pp. 1-7.
oshino, “The Best Po