Journal of Signal and Information Processing, 2013, 4, 173-175
doi:10.4236/jsip.2013.43B031 Published Online August 2013 (
An Overview of Principal Component Analysis
Sasan Karamizadeh1, Shahidan M. Abdullah1, Azizah A. Manaf1, Mazdak Zamani1,
Alireza Hooman2
1Advanced Informatics School(AIS), Universiti Teknologi Malayisa, Kuala Lumpur, Malaysia; 2Faculty of Management (FOM),
Multimedia University (MMU), Cyberjaya, Malaysia.
Received May, 2013.
The principal component analysis (PCA) is a kind of algorithms in biometrics. It is a statistics technical and used or-
thogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly
uncorrelated variables. PCA also is a tool to reduce multidimensional data to lower dimensions while retaining most of
the information. It covers standard deviation, covariance, and eigenvectors. This background knowledge is meant to
make the PCA section very straightforward, but can be skipped if the concepts are already familiar.
Keywords: Biometric; PCA; Eigenvector; Covariance; Standard Deviation
1. Introduction
Biometrics is derived from Greek .words “bio” meaning
life and metrics meaning the term biometrics is derived
from the Greek words bio meaning “life” and metrics
meaning “to measure” [1]. Biometrics refers to the iden-
tification or verification of a person based on his/her
physiological and/or behavioral characteristics [2]. Sev-
eral verification and identification based biometrics have
evolved based on various unique aspects of human body,
ease of acquiring the biometric, public acceptance and
the degree of security required [3].
Principal component analysis (PCA), also known as
Karhunen-Loeve expansion, is a classical feature extrac-
tion and data representation technique widely used in the
areas of pattern recognition and computer vision such as
face recognition [4]. The strategy of the Eigenfaces
method consists of extracting the characteristic features
on the face and representing the face in question as a
linear combination of the so called ‘eigenfaces’ obtained
from the feature extraction process [5]. The principal
components of the faces in the training set are calculated.
Recognition is achieved using the projection of the face
into the space formed by the eigenfaces [6]. A compari-
son on the basis of the Euclidian distance of the eigen-
vectors of the eigenfaces and the eigenface of the image
under question is made [7]. If this distance is small
enough, the person is identified [8]. On the other hand, if
the distance is too large, the image is regarded as one that
belongs to an individual for which the system has to be
trained [9]. Principal component analysis is a statistics
technical [10]. PCA used for reduce dimension vector to
better recognize images [11]. PCA is a useful statistical
technique that has found application in fields such as face
recognition and image compression, and is a common
technique for finding patterns in data of high dimension
[12]. Before getting to a description of PCA, this tutorial
first introduces mathematical concepts that will be used
in PCA. It covers standard deviation, covariance, and
eigenvectors [13]. This background knowledge is meant
to make the PCA section very straightforward, but can be
skipped if the concepts are already familiar [10, 14]. The
basis of the eigenfaces method is the Principal Compo-
nent Analysis (PCA). Eigenfaces and PCA have been
used by Sirovich and Kirby to represent the face images
efficiently [15, 16].
2. PCA Algorithm
Following are steps involve;
Step 1: Column or row vector of size N2 represents the
set of M images (B1, B2, B3…BM) with size N*N
Step 2: The training set image average (µ) is described
Step 3: the average image by vector (W) is different
for each trainee image
Wi = Bi - µ (2)
Step 4: Total Scatter Matrix or Covariance Matrix is
calculated from Φ as shown below:
Copyright © 2013 SciRes. JSIP
An Overview of Principal Component Analysis
Cwnwnt AAT
, (3)
where A= [W1W2W3…Wn]
Step 5: Measure the eigenvectors UL and eigenvalues
λL of the covariance matrix C.
Step6: For image classification, this feature space can
be utilized. Measure the vectors of weights
T = [w1, w2, …, wM'], (4)
Hk = UkT (B - µ), k = 1, 2, …, M' (5)
3. The Important of PCA in Face
The statistical information published in the area of facial
recognition technology utilizing the PCA method reveals
the significance of using this method for identifying and
verifying facial features [8]. Figure 1 below reveals the
amount of publications that have used the words ‘face
recognition’ and ‘PCA’ in their headings [17]
Figure 1. Number of publication utilizing [15].
Table 1 shows features about principal component
4. Advantage and disadvantage of PCA
PCA’s key advantages are its low noise sensitivity, the
decreased requirements for capacity and memory, and
increased efficiency given the processes taking place in a
smaller dimensions; the complete advantages of PCA are
listed below:
1) Lack of redundancy of data given the orthogonal
components [19, 20].
2) Reduced complexity in images’ grouping with the
use of PCA [19, 20]
3) Smaller database representation since only the
trainee images are stored in the form of their projections
on a reduced basis [19].
4) Reduction of noise since the maximum variation
basis is chosen and so the small variations in the back-
ground are ignored automatically [19].
Table 1. The features of PCA are shown in the table below
Feature Principal component analysis
Discrimination between
PCA manages the entire data for the
principal components analysis without
taking into consideration the
fundamental class structure.
PCA applications in the significant
fields of criminal investigation are
Computation for large
PCA does not require large
Direction of maximum
The directions of the maximum
discrimination are not the same as the
directions of maximum variance as it is
not required to utilize the class
information such as the within class
scatter and between class scatter
Focus PCA examines the directions that
have widest variations
Supervised learning
technique PCA is an unsupervised technique.
Well distributed classes
in small datasets
PCA is not as powerful as other
Two key disadvantages of PCA are:
1) The covariance matrix is difficult to be evaluated in
an accurate manner [19].
2) Even the simplest invariance could not be captured
by the PCA unless the training data explicitly provides
this information [4].
5. Conclusions
The PCA method is an unsupervised technique of learn-
ing that is mostly suitable for databases that contain im-
ages with no class labels. A detailed description of the
PCA technique utilizing in face recognition has been
provided. As mentioned above, the PCA method’s ad-
vantages and disadvantages have also been explained in
this study.
6. Acknowledgment
The work we presented in this paper has been supported
by the University Technology Malaysia.
[1] J. Ashok, V. Shivashankar and P. Mudiraj, “An Overview
Copyright © 2013 SciRes. JSIP
An Overview of Principal Component Analysis
Copyright © 2013 SciRes. JSIP
of Biometrics,” International Journal, Vol. 2, 2010.
[2] F. Özen, “A Face Recognition System Based on Eigen-
faces Method,” Procedia Technology, Vol. 1, 2011, pp.
[3] W. Miziolek and D. Sawicki, “Face Recognition: PCA or
ICA,” Przeglad Elektrotechniczny, Vol. 88, 2012, pp.
[4] C. Li, Y. Diao, H. Ma and Y. Li, “A Statistical PCA
Method for Face Recognition,” in Intelligent Information
Technology Application, 2008, pp. 376-380.
[5] H. Duan, R. Yan and K. Lin, “Research on Face Recogni-
tion Based on PCA,” in Future Information Technology
and Management Engineering, 2008, pp. 29-32.
[6] T. F. Karim, M. S. H. Lipu, M. L. Rahman and F. Sultana,
“Face Recognition Using PCA-based Method,” in Ad-
vanced Management Science (ICAMS), 2010 IEEE Inter-
national Conference on, 2010, pp. 158-162.
[7] Z. Haiyang, “A Comparison of PCA and 2DPCA in Face
Recognition,” in Electrical Power Systems and Com-
puters: Springer, Vol. 99, 2011, pp. 445-449.
[8] B. Poon, M. A. Amin and H. Yan, “PCA based Face
Recognition and Testing Criteria,” in Machine Learning
and Cybernetics, 2009 International Conference on, 2009,
pp. 2945-2949.
[9] Y. Wen and P. Shi, “Image PCA: A New Approach for
Face Recognition,” in Acoustics, Speech and Signal Pro-
cessing, IEEE International Conference on, 2007, pp.
[10] A. Boualleg, C. Bencheriet and H. Tebbikh, “Automatic
Face Recognition Using Neural Network-PCA,” in In-
formation and Communication Technologies, 2006, pp.
[11] Z. Wang and X. Li, “Face Recognition Based on Im-
proved PCA Reconstruction,” in Intelligent Control and
Automation (WCICA), 2010 8th World Congress on, 2010,
pp. 6272-6276.
[12] J. Meng and Y. Yang, “Symmetrical Two-Dimensional
PCA with Image Measures in Face Recognition,” Int J
Adv Robotic S y, Vol. 9, 2012.
[13] D. S. Pankaj and M. Wilscy, “Comparison of PCA, LDA
and Gabor Features for Face Recognition Using Fuzzy
Neural Network,” in Advances in Computing and Infor-
mation Technology: Springer, 2013, pp. 413-422.
[14] M. Safayani, M. T. Manzuri Shalmani and M. Khademi,
“Extended Two-dimensional Pca for Efficient Face Rep-
resentation and Recognition,” in Intelligent Computer
Communication and Processing, 2008. ICCP 2008. 4th
International Conference on, 2008, pp. 295-298.
[15] L. Sirovich and M. Kirby, “Low-dimensional Procedure
for the Characterization of Human Faces,” Vol. 4, No. 3,
1987, pp. 519-524. doi:10.1364/JOSAA.4.000519
[16] M. Turk and A. Pentland, “Eigenfaces for Recognition,”
Journal of Cognitive Neuroscience, Vol. 3, No. 1, 1991,
pp. 71-86. doi:10.1162/jocn.1991.3.1.71
[17] “Citation Report Title=(PCA face recognition)” Vol.
2013, 2013.
[18] K. S. Sodhi and M. Lal, “Face Recognition Using PCA,
LDA and Various Distance Classifier,” Journal of Global
Research in Computer Science, Vol. 4, 2013, pp. 30-35.
[19] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J.
Chang, K. Hoffman, J. Marques, J. Min and W. Worek,
“Overview of the Face Recognition Grand Challenge,” in
Computer vision and pattern recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, 2005, pp.
[20] D. Srinivasulu Asadi, Ch. DV Subba Rao and V. Saik-
rishna “A Comparative Study of Face Recognition with
Principal Component Analysis and Cross-Correlation
Technique,” International Journal of Computer Applica-
tions Vol. 10, 2010.