Y. C. LIANG

Copyright © 2013 SciRes. EPE

376

the model shown in Figure 1 is the largest. By compar-

ing the magnetic flux density, the model without iron

rotor and stator teeth produce largest magnetic flux den-

sity and output largest power.

5. Conclusions

This paper simulated the flux density and output voltage

and output power of MW class superconducting wind

generator. Three kinds of generators were calculated and

compared. The simulation results show that the model

with iron rotor and the model without iron rotor and sta-

tor teeth can meet the output power requiremen t. But the

HTS wind turbine generator without rotor iron and stator

teeth is the lightest, the cheapest, the largest induced

voltage and the largest output power. This model is the

best choice.

REFERENCES

[1] A. B. Abrahamsen, N. Mijatovic, E. Seiler, et al., “Su-

perconducting Wind Turbine Generators,” Superconduc-

tor Science and Technology, Vol. 23, 2010, pp. 1-8.

doi:10.1088/0953-2048/23/3/034019

[2] S. Gregory, “Progress on High Temperature Supercon-

ductor Propulsion Motors and Direct Drive Wind Gen-

erators,” the 2010 International Power Electronics Con-

ference, Sapporo, 2010.

[3] L. Clive and J. Müller, “A Direct Drive Wind Turbine

HTS Generator,” IEEE Power Engineering Society Gen-

eral Meeting, Tampa, Florida, USA, 2007, pp. 1-8.

[4] X. T. Duan, X. Y. Zhang, J. Zhang, et al., “Finite Element

Based Electromagnetic Field Simulation and Analysis of

Doubly Fed Induction Generator,” Power System Tech-

nology, Vol. 36, February 2012, pp. 231-236.

[5] H. Li and Z. Chen, “Overview of Difference Wind Gen-

erator Systems and Their Comparisons,” IET Renewable

Power Generation, Vol. 2, February 2008, pp. 123-138.

doi:10.1049/iet-rpg:20070044

[6] S. He, W. Q. Wang, X. Y. Zhang, et al., “Electromagnetic

Field Calculation of High Capacity Direct-Driven Per-

manent Magnet Synchronous Wind Power Generator

Based on Finite Element Method,” Power System Tech-

nology, Vol. 34, March 2010, pp. 157-161.

[7] H. Ohsaki, Y. Terao and M. Sekino, “Wind Turbine Gen-

erators using Superconducting Coils and Bulks,” Journal

of Physics, Vol. 234, 2010, pp. 1-6.

doi:10.1088/1742-6596/234/3/032043

[8] A. B. Abrahamsen, N. Mijatovic, E. Seiler, et al., “Design

Study of 10 kW Superconducting Generator for Wind

Turbine Applications,” IEEE Transactions on Applied

Superconductivity, Vol. 19, 2009, pp. 678-1681.

doi:10.1109/TASC.2009.2017697

[9] K. S. Ship and J. K. Sykulski, “Feild Simulation Studies

for a High Temperature Superconducting Synchronous

Generator with a Coreless Rotor,” IEE Proceedings of

Science, Measurements and Technology, Vol. 151, pp.

414-418.

[10] M. K. Al-Mosawi, C. Beduz and Y. Yang, “Construction

of a 100 kVA High Temperature Superconducting Syn-

chronous Generator,” IEEE Transactions on Applied Su-

perconductivity, Vol. 15, 2005, pp. 2182-2185.

doi:10.1109/TASC.2005.849607

[11] H. M. Wen, B. Wendell, G. Kevin, et al., “Performance

Test of a 100 kW HTS Generator Operating at 67K-77K,”

IEEE Transactions on Applied Superconductivity, Vol. 9,

2009, pp. 652-1655.

[12] X. H. Li, Y. G. Zhou, L. Han, et al., “Design of a High

Temperature Superconducting Generator for Wind Power

Applicaton,” IEEE Transactions on Applied Supercon-

ductivity, Vol. 21, 2011, pp. 155-1158.

[13] K. F. Goddard, B. Lukasik and J. K. Sykulski, “Alterna-

tive Designs of High-Temperature Superconducting Syn-

chronous Generators,” IEEE Transactions on Applied

Superconductivity, Vol. 19, 2009, pp. 3805-3811.

doi:10.1109/TASC.2009.2031626

[14] H. M. Wen, W. Bailey, M. K. Al-Mosawi, et al., “Further

Testing of an "Iron-Cored" HTS Synchronous Generator

Cooled by Liquid Air,” IEEE Transactions on Applied

Superconductivity, Vol. 21, 2011, pp. 1163-1166.

doi:10.1109/TASC.2010.2093487

[15] S. Hidehiko, T. Teppei, M. Takaya, et al., “Development

of an Axial Flux Type PM Synchronous Motor with the

Liquid Nitrogen Cooled HTS Armature Windings,” IEEE

Transactions on Applied Superconductivity, Vol. 17, 2007,

pp.1637-1640.

[16] B. Lukasik, K. F. Goddard and J. K. Sykulski, “Finite

Element Assisted Method of Estimating Equivalent Cir-

cuit Parameters for a Superconducting Synchronous Gen-

erator with a Coreless Rotor,” IEEE Transactions on

Magnetics, Vol. 45, 2009, pp. 1226-1229.

doi:10.1109/TMAG.2009.2012572

[17] K. S. Ship, K. F. Goddard and J. K. Sykulski, “Field Op-

timization in a Synchronous Generator with High Tem-

perature Superconducting Field Winding and Magnetic

Core,” IEE Proceedings of Science, Measurement and

Technology, Vol. 149, 2002, pp. 194-198.

doi:10.1049/ip-smt:20020641

[18] B. Lukasik, K. F. Goddard and J. K. Sykulski, “Fi-

nite-element Assisted Method to Reduce Harmonic Con-

tent in the Air-gap Flux Density of a High-temperature

Superconducting Coreless Rotor Generator,” IET Science,

Measurement and Technology, Vol. 12, 2008, pp.

485-492.