T. H. OUYANG ET AL.

Copyright © 2013 SciRes. EPE

372

tions for a Changing World, 2010,

[4] C. Nicholas and Merlinde, et al., “Detecting, Categoriz-

ing and Article Forecasting Large Ramps in Wind Farm

Power Output Using Meteorological Observations and

WPPT,” Wind Energy, Vol. 10, No. 5, 2007, pp. 453-470.

doi:10.1002/we.235

[5] J. F. Li, P. F. Shi and H. Gao, “The Report of Chinese

Wind Power Development 2010,” Vol. 10, 2010.

[6] C. Ferreira, J. Gama and L. Matias, “A Survey on Wind

Power Ramp Forecasting,” Argonne National Laboratory

report, 2011.

[7] A. Sfetsos, “A Novel Approach for the Forecasting of the

Mean Hourly Wind Speed Time Series,” Renewable En-

ergy, Vol. 27, No. 2, 2002, pp. 163-174.

doi:10.1016/S0960-1481(01)00193-8

[8] A. J. Smola and B. Schoelkopf, “A Tutorial on Support

Vector Regression,” Statistics and Computing, Vol. 14,

No. 3, 2004, pp. 199-222.

doi:10.1023/B:STCO.0000035301.49549.88

[9] A. J. Svoboda, C. Tseng, C. Li and R. B. Johnson,

“Short-term Resource Scheduling with Ramp Con-

straints,” IEEE Transactions on Power Systems, Vol. 12,

No. 1, 1997, pp. 77-83. doi:10.1109/59.574926

[10] L. A. Landberg, “Mathematical Look at a Physical Power

Prediction Model,” Wind Energy, Vol. 1, 1998, pp. 23-28.

[11] L. Landberg, L. Myllerup, O. Rathmann, E. Lundtang

Petersen, B. Hoffmann Jorgensen, J. Badger and N. Gyl-

ling, “Mortensen Wind Resource Estimation – An Over-

view,” Wind Energy, Vol. 6, No. 3, 2003, pp. 26-71.

[12] M. Magnusson and L. Wern, “Wind Energy Predictions

Using CFD and HIRLAM Forecast,” Proceedings of the

European Wind Energy Conference EWEC2001, Copen-

hagen, Denmark, 2001.

[13] HR Glahn, DA Lowry, “The Use of Model Output Statis-

tics (MOS) in Objective Weather Forecasting,” Journal

of Applied Meteorology, Vol. 11, No. 8, 1972.

[14] J. L. Torres, A. García, M. de Blas and A. de Francisco,

“Forecast of Hourly Averages Wind Speed with ARMA

Models in Navarre,” Solar Energy, Vol. 79, No. 1, 2005,

pp. 65-77.

[15] R. L. Welch, S. M. Ruffing and G. K. Venayagamoorthy,

“Comparison of Feed Forward and Feedback Neural

Network Architectures for Short-term Wind Speed Pre-

diction,” Proceedings of International Joint Conference

on Neural Networks, Atlanta, Georgia, USA, 2009.

[16] T. H. M. El-Fouly, E. F. El-Saadany and M. M. A.

Salama, “Grey predictor for Wind Energy Conversion

Systems Output Power Prediction,” IEEE Transactions

on Power System, Vol. 21, 2006.

[17] I. G. Damousis and P. Dokopoulos, “A Fuzzy Model

Expert System for the Forecasting of Wind Speed and

Power Generation in Wind Farms,” Proceedings of the

IEEE International Conference on Power Industry Com-

puter Applications PICA 01, 2001.

[18] H. Mori and Y. Umezawa, “Application of NB Tree to

Selection of Meteorological Variables in Wind Speed

Prediction,” Proceedings of the IEEE Transmission &

Distribution Conference & Exposition, Asia and Pacific;

2009.

[19] R. Jursa, “Wind Power Prediction with Different Artifi-

cial Intelligence Models,” Proceedings of the European

Wind Energy Conference, EWEC2007, Milan, Italy,

2007.

[20] M. A. Mohandes, T. O. Halawani, S. Rehman and A. A.

Hussain, “Support Vector Machines for Wind Speed Pre-

diction,” Renewable Energy, Vol. 29, No. 6, 2004.

[21] M. Negnevitsky, P. Johnson and S. Santoso, “Short-term

Wind Power Forecasting Using Hybrid Intelligent Sys-

tems,” Proceedings of the IEEE Power Engineering So-

ciety General Meeting, Tampa, Florida, USA, 2007.

[22] Sevlian, Raffi, Rajagopal and Ram, “Wind Power Ramps:

Detection and Statistics,” IEEE Power and Energy Soci-

ety General Meeting, 2012.

[23] M. C. Alexiadis, P. S. Dokopoulos, and H. S.

Sahsamanoglou, “Wind Speed and Power Forecasting

Based on Spatial Correlation Models,” IEEE Transaction

on Energy Conversion, Vol. 14, No. 3, 1999, pp. 836-842.

doi:10.1109/60.790962

[24] C. W. Potter and M. Negnevitsky, “Very Short-term

Wind Forecasting for Tasmanian Power Generation,”

IEEE Transaction on Power System, Vol. 21, No. 2, 2006,

pp. 965-972.doi:10.1109/TPWRS.2006.873421

[25] Kusiak, H. Zheng and Z. Song, “Short-term Prediction of

Wind Farm Power: A Data Mining Approach,” IEEE

Trans. Energy Conversion, Vol. 24, No. 1, 2009, pp.

125-136.doi:10.1109/TEC.2008.2006552

[26] P. Pinson and G. Kariniotakis, “On-line Assessment of

Prediction Risk for Wind Power Production Forecasts,”

in Proceedings of the European Wind Energy Conference

and Exhibition, 2003.

[27] H. Zareipour, H. Dongliang and W. Rosehart, “Wind

Power Ramp Events Classification and Forecasting: A

Data Mining Approach,” Power and Energy Society Gen-

eral Meeting, Detroit, USA, 2011.

[28] H. Hamilton, “A New Approach to the Economic Analy-

sis of Nonstationay Time-series and Business Cycles,”

Econometrica, Vol. 57, No. 2, 1989, pp. 357-384.

doi:10.2307/1912559

[29] A. W. Robertson, S. Kirshner and P. Smyth, “Hidden

Markov Models for Modeling Daily Rainfall Occurence

over Brazil,” Report UCI-ICS-03-27, Information and

Computer Sciences, University of California, Irvine (Cal-

ifornia) 2003.

[30] P. Ailliot and V. Monbet, “Markov Switching Autore-

gressive Models for Wind Time Series,” Journal of Sta-

tistical Planning and Inference (submitted) 2006.

[31] P. Pinson, L. E. A. Christensen, H. Madsen, P. E.

Sorensen, M. H. Donovan and L. E. Jensen, “Re-

gime-switching Modeling of the Fluctuations of

Offshore wind Generation,” Journal of Wind Engi-

neering and Industrial Aerodynamics, Vol. 96

No.12, 2008, pp. 2327-2347.

doi:10.1016/j.jweia.2008.03.010