Intelligent System Design for Stator Windings Faults Diagnosis: Suitable for Maintenance Work 531

the application. The work proposed a non invasive fault

diagnosis method, and no human is exposed directly to

the machine in working condition.

It also showed that mechanical failures and unbalance

voltage supply do not compromise the system shortcir-

cuit fault diagnosis.

The proposed approach came up with very good re-

sults. Finally, from this work we also realized that the

current third harmonic component does not supply the

SVM with useful information for fault diagnosis purpose,

and reduce the cost of data processing.

6. Acknowledgements

The authors thank Fapemig (APQ-00589-11) for the sup-

port given to this work.

REFERENCES

[1] D. A. Asfani, A. K. Muhammad, Syafaruddin, M. H.

Purnomo and T. Hiyama, “Temporary Short Circuit De-

tection in Induction Motor Winding Using Combination

of Wavelet Transform and Neural Network,” Expert Sys-

tems with Applications, Vol. 39, No. 5, 2012, pp. 5367-

5375. http://dx.doi.org/10.1016/j.eswa.2011.11.048

[2] L. M. R. Baccarini, L. V. Silva, B. R. de Menezes and W.

M. Caminhas, “Svm Practical Industrial Application for

Mechanical Faults Diagnostic,” Expert Systems with Ap-

plications, Vol. 38, No. 6, 2011, pp. 6980-6984.

http://dx.doi.org/10.1016/j.eswa.2010.12.017

[3] M. F. S. V. D’Angelo, R. M. Palhares, R. H. C. Takaha-

shi, R., Loschi, L. M. R. Baccarini and W. Caminhas,

“Incipient Fault Detection in Induction Machine Stator-

Winding Using a Fuzzy-Bayesian Change Point Detec-

tion Approach,” Applied Soft Computing, Vol. 11, No. 1,

2011, pp. 179-192.

http://dx.doi.org/10.1016/j.asoc.2009.11.008

[4] P. Zhang, Y. Du, T. G. Habetler and B. Lu, “A Survey of

Condition Monitoring and Protection Methods for Me-

dium-Voltage Induction Motors,” IEEE Transactions on

Industry Applications, Vol. 47, No. 1, 2011, pp. 34-46.

http://dx.doi.org/10.1109/TIA.2010.2090839

[5] R. M. Tallam, S. B. Lee, G. C. Stone, G. B. Kliman, J.

Yoo and T. G. Habetler, “A Survey of Methods for De-

tection of Stator Related Faults in Induction Machines,”

IEEE Transaction on Industry Application, Vol. 43, No. 4,

2007, pp. 920-933.

http://dx.doi.org/10.1109/TIA.2007.900448

[6] A. Siddique, G. S. Yadava and B. Singh, “A Review of

Stator Fault Monitoring Techniques of Induction Mo-

tors,” IEEE Transactions on Energy Conversion, Vol. 20,

No. 1, 2005, pp. 106-114.

http://dx.doi.org/10.1109/TEC.2004.837304

[7] A. M. Somaya, H. S. Shehata, El-Goharey, M. I. Marei

and A. K. Ibrahim, “Detection of Induction Motors Ro-

tor/Stator Faults Using Electrical Signatures Analysis,”

Proceedings of International Conference on Renewable

Energies and Power Quality (ICREPQ’13), Bilbao, 20-22

March 2013, pp. 1-6.

[8] D. Zhen, T. Wang, F. S. Gu and A. Ball, “Fault Diagnosis

of Motor Drives Using Stator Current Signal Analysis

Based on Dynamic Time Warping,” Mechanical Systems

and Signal Processing, Vol. 34, No. 1-2, 2013, pp. 191-

202. http://dx.doi.org/10.1016/j.ymssp.2012.07.018

[9] K. K. Pandey, P. H. Zope and S. R. Suralkar, “Review on

Fault Diagnosis in Three-Phase Induction Motor,” IJCA

Proceedings on National Conference MEDHA 2012, Vol.

1, 2012, pp. 53-58.

[10] O. Jasim, M. Sumner, C. Gerada and J. Arellano-Padilla,

“Development of a New Fault-Tolerant Induction Motor

Control Strategy Using an Enhanced Equivalent Circuit

Model,” IET Electric Power Applications, Vol. 5, 2011,

pp. 618-627.

[11] J. Sottilee, F. C. Trutt and J. L. Kohler, “Condition

Monitoring of Stator Windings in Induction Motors. II.

Experimental Investigation of Voltage Mismatch Detec-

tors,” IEEE Transactions on Industry Applications, Vol.

38, No. 5, 2002, pp. 1454-1459.

http://dx.doi.org/10.1109/TIA.2002.802921

[12] W. T. Thomson and M. Fenger, “Current Signature Ana-

lysis to Detect Induction Motor Faults,” IEEE Industry

Application Magazine, Vol. 7, No. 4, 2001, pp. 26-34.

http://dx.doi.org/10.1109/2943.930988

[13] L. M. R. Baccarini, B. R. de Menezes and W. M. Camin-

has, “Fault Induction Dynamic Model, Suitable for Com-

puter Simulation: Simulation Results and Experimental

Validation,” Mechanical Systems and Signal Processing,

Vol. 24, No. 1, 2010, pp. 300-311.

http://dx.doi.org/10.1016/j.ymssp.2009.06.014

[14] O. A. Mohamed, N. Y. Abed and S. Garni, “Modeling

and Characterization of Induction Motor Internal Faults

Using Finite Element and Discrete Wavelet Transforms,”

IEEE Transactions on Magnetics, Vol. 42, No. 10, 2006,

pp. 3434-3436.

http://dx.doi.org/10.1109/TMAG.2006.879091

[15] Md. R. Shahriar, T. Ahsan and U. Chong, “Fault Diagno-

sis of Induction Motors Utilizing Local Binary Pattern

Based Texture Analysis,” EURASIP Journal on Image

and Video Processing, Vol. 2013, 2013, pp. 1-13.

http://dx.doi.org/10.1186/1687-5281-2013-29

[16] H. A. Khwaja, S. P. Gupta and V. Kumar, “A Statistical

Approach for Fault Diagnosis in Electrical Machines,”

IETE Journal of Research, Vol. 56, No. 3, 2010, pp 146-

155. http://dx.doi.org/10.4103/0377-2063.67099

[17] G. S. Maruthi and P. S. Vittal, “Electrical Fault Detection

in Three Phase Squirrel Cage Induction Motor by Vibra-

tion Analysis Using MEMS Accelerometer,” Proceeding

of International Conference on Power Electronics and

Drives Systems, Vol. 2, 28 October-1 November 2005, pp.

838-843. http://dx.doi.org/10.1109/PEDS.2005.1619804

[18] Y.-W. Youn, S.-H. Yi, D.-H. Hwang, J.-H. Sun, D.-S.

Kang and Y.-H. Kim, “MUSIC-Based Diagnosis Algo-

rithm for Identifying Broken Rotor Bar Faults in Induc-

tion Motors Using Flux Signal,” Journal of Electrical

Engineering & Technology, Vol. 8, No. 2, 2013, pp. 288-

294. http://dx.doi.org/10.5370/JEET.2013.8.2.288

[19] S. Chen and R. Živanović, “Modelling and Simulation of

Copyright © 2013 SciRes. JSEA