
Surface Characterization of As-Spun and Supercontracted Nephila clavipes Dragline Silk
Copyright © 2013 SciRes. JSEMAT
26
D. Kaplan, W. W. Adams, R. K. Eby, D. Mahoney and D.
L. Vezie, “Mechanical and Thermal Properties of Drag-
line Silk from the Spider Nephila clavipes,” Polymers for
Advanced Technologies, Vol. 5, No. 8, 1994, pp. 401-
410. doi:10.1002/pat.1994.220050801
[10] R. W. Work, “A Comparative Study of the Supercontrac-
tion of Major Ampullate Silk Fibers of Orb-Web-Build-
ing Spiders (Araneae),” Journal of Arachnology, Vol. 9,
No. 3, 1981, pp. 299-308.
[11] L. W. Jelinski, A. Blye, O. Liivak, C. Michal, G. LaVerde,
A. Seidel, N. Shah and Z. Yang, “Orientation, Structure,
Wet-Spinning, and Molecular Basis for Supercontraction
of Spider Dragline Silk,” International Journal of Bio-
logical Macromolecules, Vol. 24, No. 2-3, 1999, pp. 197-
201. doi:10.1016/S0141-8130(98)00085-3
[12] T. A. Blackledge, C. Boutry, S. C. Wong, A. Baji, A.
Dhinojwala, V. Sahni and I. Agnarsson, “How Super Is
Supercontraction? Persistent versus Cyclic Responses to
Humidity in Spider Dragline Silk,” Journal of Experi-
mental Biology, Vol. 212, No. 13, 2009, pp. 1980-1988.
doi:10.1242/jeb.028944
[13] K. N. Savage, P. A. Guerette and J. M. Gosline, “Super-
contraction Stress in Spider Webs,” Biomacromolecules,
Vol. 5, 2004, pp. 675-679. doi:10.1021/bm034270w
[14] I. Agnarsson, P. A. Guerette and J. M. Gosline, “Super-
contraction Forces in Spider Dragline Silk Depend on
Hydration Rate,” Zoology, Vol. 112, No. 5, 2009, pp.
325-331. doi:10.1016/j.zool.2008.11.003
[15] A. Sponner, W. Vater, S. Monajembashi, E. Unger, F.
Grosse and K. Weisshart, “Composition and Hierarchical
Organization of a Spider Silk,” PloS One, Vol. 2, No. 10,
2007, pp. 1-8. doi:10.1371/journal.pone.0000998
[16] K. Augsten, P. Mühlig and C. Herrmann, “Glycoproteins
and Skin-Core Structure in Nephila clavipes Spider Silk
Observed by Light and Electron Microscopy,” Scanning,
Vol. 22, 2000, pp. 12-15. doi:10.1002/sca.4950220103
[17] L. Eisoldt, A. Smith and T. Schiebel, “Decoding the Se-
crets of Spider Silk,” Materials Today (Kidlington, Eng-
land), Vol. 14, No. 3, 2011, pp. 80-86.
[18] M. Xu and R. V. Lewis, “Structure of a Protein Superfi-
ber: Spider Dragline Silk,” Proceedings of the National
Academy of Sciences, Vol. 87, No. 18, 1990, pp. 7120-
7124. doi:10.1073/pnas.87.18.7120
[19] M. Hinman, J. Jones and R. V. Lewis, “Synthetic Spider
Silk: A Modular Fiber,” Trends in Biotechnology, Vol. 18,
No. 9, 2000, pp. 374-379.
doi:10.1016/S0167-7799(00)01481-5
[20] J. O. Warwicker, “Comparative Studies of Fibroins: II.
The Crystal Structures of Various Fibroins,” Journal of
Molecular Biology, Vol. 2, 1960, pp. 350-362.
doi:10.1016/S0022-2836(60)80046-0
[21] M. Creager, J. E. Jenkins, L. A. Thagard-Yeaman, A. E.
Brooks, J. A. Jones, R. V. Lewis, G. P. Holland and J. L.
Yarger, “Solid-State NMR Comparison of Various Spi-
ders’ Dragline Silk Fiber,” Biomacromolecules, Vol. 11,
No. 8, 2010, pp. 2039-2043. doi:10.1021/bm100399x
[22] J. D. Van Beek, S. Hess, F. Vollrath and B. H. Meier,
“The Molecular Structure of Spider Dragline Silk: Fold-
ing and Orientation of the Protein Backbone,” PNAS:
Proceedings of the National Academy of Sciences, Vol.
99, No. 16, 2002, pp. 10266-10271.
[23] R. H. Garrett and C. M. Grishman, “Biochemistry,”
Brooks/Cole, 1999.
[24] B. Faugas, “Surface Characterization of Nephila clavipes
Dragline Silk,” Master’s Thesis, Clemson University,
Clemson, 2012.
[25] F. Vollrath, B. Madsen and Z. Shao, “The Effect of Spin-
ning Conditions on the Mechanics of a Spider’s Dragline
Silk,” Proceedings of the Royal Society B: Biological Sci-
ences, Vol. 268, No. 1483, 2001, pp. 2339-2346.
doi:10.1098/rspb.2001.1590
[26] P. J. Ramón-Torregrosa, M. A. Rodríguez-Valverdea, A.
Amirfazlia and M. A. Cabrerizo-Vílcheza, “Factors Af-
fecting the Measurement of Roughness Factor of Surfaces
and its Implications for Wetting Studies,” Colloids and
Surfaces A: Physicochemical and Engineering Aspects,
Vol. 323, No. 1-3, 2008, pp. 83-93.
doi:10.1016/j.colsurfa.2007.10.032
[27] J. Vandiver, D. Dean, N. Patel, W. Bonfield and C. Ortiz,
“Nanoscale Variation in Surface Charge by Synthetic
Hydroxyapatite Detected by Chemically and Spatially
Specific High Resolution Force Spectroscopy,” Biomate-
rials, Vol. 25, No. 3, 2005, pp. 271-83.
doi:10.1016/j.biomaterials.2004.02.053
[28] B. Zimmerman, J. Chow, A. G. Abbott, M. S. Ellison, M.
S. Kennedy and D. Dean, “Variation of Surface Charge
Along the Surface of Wool Fibers Assessed by High-
Resolution Force Spectroscopy,” Journal of Engineered
Fibers and Fabrics, Vol. 6, No. 2, 2011, pp. 61-66.
[29] B. Zimmerman, “Mechanical and Chemical Characteriza-
tion of Biological Composite Structures,” Master’s Thesis,
Clemson University, Clemson, 2009.
[30] G. T. Hermanson, “Bioconjugate Techniques,” Academic
Press, Boston, 2008.
[31] N. Du, Z. Yang, X. Y. Liu, Y. Li and H. Y. Xu “Struc-
tural Origin of the Strain-Hardening of Spider Silk,” Ad-
vanced Functional Materials, Vol. 21, No. 4, 2011, pp.
772-778. doi:10.1002/adfm.201001397
[32] S. Lombardi and D. Kaplan, “The Amino Acid Composi-
tion of Major Ampullate Gland Silk (Dragline) of Nephila
clavipes (Araneae, Tetragnathidae),” Journal of Arach-
nology, Vol. 18, No. 3, 1990, pp. 297-306.