Creative Education
2013. Vol.4, No.10A, 21-28
Published Online October 2013 in SciRes (
Copyright © 2013 SciRes. 21
The Impact of Motivation and Social Interaction on the
E-Learning at Arab Open University, Kingdom of Bahrain
Sara Essam, Jaflah Al-Ammary
Department of Information Systems, College of IT, University of Bahrain, Sakhir, Kingdom of Bahrain
Received June 29th, 2013; revised July 29th, 2013; accepted August 7th, 2013
Copyright © 2013 Sara Essam, Jaflah Al-Ammary. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.
E-learning can be considered as a useful tool for enhancing the quality of the educational process. How-
ever, the success of any technology application is dependent on how good it would satisfy the needs of its
key stockholders, who compose the constituency of an organization and address their concerns. In the
context of e-learning, students are the main stakeholders. Therefore, there is an emergent need to under-
stand the factors that influence the use of e-learning to satisfy the students and improve their learning. The
main aim of the current study is to investigate the factors that affect the use of e-learning by the post-
graduate students at the Arab Open University. Factors such as motivation and social interaction were se-
lected to be potential factors for using e-learning. Moreover, the effect of e-learning on the students’ per-
ceived satisfaction and performance was examined. The study sample is comprised of postgraduate stu-
dents enrolled in the AOU—the Kingdom of Bahrain branch. One hundred and fifty surveys were distrib-
uted both in person and as a web survey. The results provide a great indication about the use of e-learning
at the Kingdom of Bahrain. Results on the research model and hypotheses show that motivation is the
main factor that has the most significant impact on using e-learning at the AOU, followed by stu-
dent-student interaction. Student-instructor interaction has shown to have an indirect impact on e-learning
via motivation.
Keywords: Arab Open University; E-Learning; Motivation; Student-Student Interaction;
Student-Instructor Interaction; Student’s Perceived Satisfaction; Students’ Performance
E-learning presents new channels and approaches for the tra-
ditional method of teaching and learning. It is one of the inno-
vative approaches for learning which challenge the traditional
style of teaching and change the lecturers’ work patterns (Freire,
1994; Singh et al., 2005). E-learning is defined as the use of
modern ICT and emergent media such as Internet, satellite
broadcast, interactive TV and so on to deliver instruction, in-
formation and learning content (Freire, 1994; Selim, 2007). E-
learning provides more emergent teaching tools that facilitate
more effective teaching methods compared to that of the tradi-
tional teaching methods (Volery et al., 2002). With e-learning,
instructors’ schedules are redefined, as well as their duties and
relationships toward students (Young, 2002). Instructors are
provided with superior teaching tools and methods, allowing
them to test students in real business situations (Singh et al.,
2005). In addition they are given the opportunity to distribute
up-to-date course content in relatively no time and apply
knowledge in contemporary situations (Teare, 2000). Moreover,
using such innovative learning tools, instructor can eliminate
the students’ technical frustrations, enhance their social interac-
tion and encourage their involvement in an online community
(Singh et al., 2005).
Although e-learning may increase access flexibility, elimi-
nate geographical barriers and improve convenience and effec-
tiveness of learning, there are still many questions raised by the
researchers about the effectiveness of e-learning and to what
extent it can be a satisfactory method for teaching. Singh (2005)
stated that e-learning should not be considered as an alternative
to the traditional teaching method. E-learning suffers from
many factors that may affect its preference compared to the
traditional face-to-face methods. Among these factors are, the
feeling of isolation caused by the lack of social interaction be-
tween learners and instructors and between learners and other
learners, the students’ motivation to use e-learning, their com-
fort with the new technology in which the technical and aca-
demic support is ambiguous, and the students’ low self-confi-
dence in their abilities to use the technology. Rovai (2002) in-
dicated that there is higher incidence of withdrawal or incom-
plete grades among students using e-learning. Many students
had some negative feelings and beliefs toward online learning.
They believe that technology will degrade higher education and
will ruin the special relationships between instructors and stu-
dents, and between students and other students that create a
productive learning community (Rovai et al., 2003). Students
also believe that the traditional course delivery and the class-
room create an environment that is more responsive to their
learning needs which would result in increasing the effective-
ness of their learning (Wagner et al., 2008). Moreover, many
students feel uncomfortable using online settings, as they are
often required to find the answers themselves using available
The Arab Open University (AOU) is a non-profit institution
aiming at offering a large and diverse population of students, an
efficient access to higher education and lifelong learning, de-
spite the place and time boundaries and social economic back-
grounds. The AOU is following a high quality teaching and
learning process, and employing effective media and technolo-
gies for education and assessment; in order to provide the most
academic support to the students, and to extend and enhance
lifelong learning. To ensure a superior learning and knowledge
building experience for students, AOU is applying blended
learning, which is one of the e-learning categories (Singh,
2003). Thus, AOU allows students to obtain a complete inte-
grated blend of learning resources, in which they have the abil-
ity to obtain the learning material package as well as online
access to a virtual learning environment that offers most of the
features that are available in the real classroom.
As any educational institute running in an Arabic country,
AOU is still unable to satisfy their students specially the post-
graduate. Many students at the AOU withdraw after one year or
less. E-learning technology can be considered as useful tool for
enhancing the quality of teaching and learning process. How-
ever, the success of any technology application is dependent on
the extent to which it satisfies the needs and addresses the con-
cerns of its key stakeholders, who compose the constituency of
an organization (Thompson et al., 2001). In the context of e-
learning, students are the main stakeholders. Therefore, there is
an emergent need to understand the factors that influence the
use of e-learning to satisfy the students and improve their
learning. The current study aims at investigating factors that
affect the use of e-learning by the postgraduate students at the
Arab Open University. Factors such as motivation and social
interaction were selected to be potential factors for use of
e-learning. Moreover, the effect of e-learning on the students’
perceived satisfaction and performance will be examined.
Factors Affecting the Use of E-Learning
The e-learning is not always a successful project (Miller,
2010) and off course not all of them are a failure projects.
Hence, to achieve a high success level in adopting e-learning as
a new learning approach, factors impacting the e-learning
should be identified and maintained. One of the factors that
need to be maintained is the students’ demography. The age,
gender, marital and working statuses have been found to have a
significant influence on predicting the students’ interest in
online education (Alstete et al., 2004; Hong, 2002). Gender, for
instance, has been found in previous studies to be a very influ-
ential factor in terms of using e-learning (Coldwell et al., 2008).
Thus, online courses tend to favor women, as they are generally
more motivated, more network oriented, more collaborative,
and better at scheduling their time (Coldwell et al., 2008).
Moreover, Alstete and Beutell (2004) stated that when it comes
to the use of e-learning, the age has been found to be a signifi-
cant factor. Older students are more likely to engage in e-
learning than younger students in terms of using discussion
boards and other related tools (Coldwell et al., 2008). Younger
students are less self-directed and self-disciplined. A third
demographic factor that has been found to affect the use of
e-learning is the working status. Cain (2008) indicated that
college student employment has been increasing steadily for at
least four decades and many full time and part time employees
are moving to online learning due to its convenience and flexi-
bility with their work schedule.
Different people would have different approaches to learning.
These individual differences are called by psychologists, learn-
ing styles (Stash et al., 2010). Learning styles affect the ways
that people attach their own meanings to the topic being taught
and help them develop schemas for learning (Roi, 2006). It has
been found by Price (2004) that learning styles are particularly
important in the context of web-based learning. Moreover, Roi
(2006) found that students learning styles had affected their
grade performance in online learning. Lecturers’ attitudes to-
ward the e-learning systems have been found to be affecting the
students’ attitudes and performance. Hammoud, Love and Brink-
man (2008) revealed that instructors of electronic courses are
playing a key role in encouraging students to use e-learning
systems such as WebCT and use its tools to communicate. The
study also found that the instructors’ feedback and their obser-
vation of the students’ progress affect the students’ attitude to-
wards e-learning positively. Moreover, researchers have found
that high computer self-efficacy level could be an important
factor in helping people build technical skills and use com-
puters (Busch, 1995). Other factors that may impact using e-
learning include: how comfort is the learner with the technol-
ogy, the presence of technical support, the ability to communi-
cate and work with peer learners, the complex relationship be-
tween cognitive factors and the special nature of human-ma-
chine interfaces in learning process (Miller, 2005). In general,
the above mentioned factors can be categorized in different
ways. Sun, Tasi, Finger, Chen and Yen (2008) for instance,
have identified six dimensions for the factors that impacting the
use of e-learning which include: the learner, instructor, course,
technology, design and environmental factors. Selim (2007)
however, identified four categories including the student, in-
formation technology, instructor and the university support.
Research Model and Hypotheses
The current research study has a main objective of investi-
gating factors that affect the use of e-learning by the postgradu-
ate students at the AOU. Moreover, the effect of e-learning on
the students’ perceived satisfaction and performance will be
examined. The literature revealed for many factors that may
affect the use of e-learning. For the purpose of the current re-
search, factors such as motivation and social interaction were
The research model is developed as depicted in Figure 1.
The research model depicted in the figure illustrates that moti-
vation has a direct effect on using e-learning. However, both
student-instructor and student-student interaction have a direct
and indirect impact via motivation on the use of e-learning.
E-learning, on the other hand, has an effect on both students’
perceived satisfaction and students’ performance.
Research Model and Hypotheses
Interaction Direct and Indirect Impact on Using
Interaction can be defined as the interrelationship and ex-
change between individuals and groups in which they are in-
fluencing each other (Wagner, 1994). Interaction focuses on the
interpersonal behaviors in a learning community (Rovai et al.,
2003). It is the fundamental of the academic teaching as stu-
Copyright © 2013 SciRes.
dents can actively involved in an intentional process in order to
learn (Colaric et al., 2001; Moore et al., 1990; Cao et al., 2008).
The interaction is essential for students to formulate their ques-
tions, evaluate the responses/answers which will enhance their
understanding (Cao et al., 2008). Three types of interaction
have been identified to be considered in distance education and
online learning (Moore, 1989; Sher, 2009): student-content,
student-student and student-instructor interaction. In the e-
learning environment the course materials which can include
text, audio, videotape, CD-ROM, or computer program are
provided online through what actual learning process can be
done. Therefore, student-content interaction is essential as it is
the way by which students access and interact with the course
materials in order to internalize information they come across
(Sher, 2009; Murray et al., 2012). Student-instructor interaction
can be done on different forms such as delivering and present-
ing information, providing feedback, and encouraging and
guiding students (Sher, 2009; Paechter et al., 2010). Students
can also interact with their instructors by asking questions and
communicating with them regarding course activities (Sher,
2009; Murray et al., 2012). Student-student interaction on the
other hand, is a way in which students are involved in collabo-
rative activities in the present or absence of the instructors
(Sher, 2009). They aim at exchanging information and ideas
about the course to accomplish different types of course as-
sessments (assignment/project) as well as sharing knowledge
(Sher, 2009; Murray et al., 2012). For the purpose of the current
research, only the social interaction, which includes student-
instructor and student-student, will be investigated.
Interaction has been found to be a critical element for the
overall success and effectiveness of distance education and
e-learning (Rovai, 2002; Sher, 2009; Neo, 2003). Without in-
terpersonal interaction students will not be able to grasp, ac-
quire, and develop knowledge. E-learning environment is lim-
ited by the difficult interaction (Sher, 2009). The transactional
distance in such environment makes it difficult for the instruc-
tors and students to interact in the same physical and sequential
space (Moore, 1989). Many researchers support the idea that
the student-instructor and student-student interactions are im-
portant elements in the design and successful implementation of
online learning courses (Coldwell et al., 2008). Rovai (2002)
indicated that students may favor online learning because they
experience a sense of online community, enjoy mutual interde-
pendence and sense of trust and interaction among community
members. Moreover, Neo (2003) stated that there are many
advantages students gain through their use of e-learning, such
as teamwork and critical thinking. Peer interaction is an impor-
Figure 1.
Research model.
tant determinant for an effective learning as student can build
many imperative skills via the collaborative e-learning, such as
teamwork, collaboration and critical thinking (Neo et al., 2009).
Moreover, continuous and recursive interaction between stu-
dents and instructors is essential for building knowledge and
sustaining an effective learning process (Bruner, 1960; Bruner,
1996; Pask, 1975). In fact, many studies conducted on distance
education, revealed that interaction is the key to effective dis-
tance education (Bernard et al., 2004; Lou et al., 2006; Zhao et
al., 2005). Therefore, the following hypotheses have been de-
H1: Student-instructor interaction has a positive effect on
using e-learning at AOU.
H2: Student-student interaction has a positive effect on
using e-learning at AOU.
The interaction (student-student or student-instructor) can be
considered as “the heart of the learning experience” in both the
traditional and online learning environment (Wanstreet, 2006).
It is the key to motivating students to learn, maintain and en-
hance their interest in the subject, as well as providing emo-
tional support, which are all critical for building knowledge and
enhancing the student performance (Cao et al., 2008; Moore,
1989; Sher, 2009; Paechter et al., 2010). The instructor pres-
ence and interaction with students has shown to be positively
related to student learning and motivation (Baker, 2010). When
students have a strong relationship with their instructors they
will believe more in their instructors and more motivated to be
involved in the learning process (Llias et al., 2012). On the
other hand, there are few researches that revealed on the sig-
nificant effect of the student-student interaction on motivation.
However, with this type of interaction, students benefit in many
ways such as working in small groups to construct understand-
ing, socio-emotional support, and learning within an intercom-
nected environment (Paechter et al., 2010) which may motivate
the students to do better in the e-learning environment. There-
fore, the following hypotheses have been developed:
H3: Student-instructor interaction has a positive effect on
the student motivation to use e-learning at AOU.
H4: Student-student interaction has a positive effect on
the student motivation to use e-learning at AOU.
Motivation Direct Impact on Using E-Learning
Motivation is defined by Certo et al. (2006) as “the inner
state that causes an individual to behave in a way that ensures
the accomplishment of some goals”. Motivation to perform a
behavior can be divided into two main types: intrinsic and ex-
trinsic motivation (Cain, 2008; Young, 2005; Hennessey et al.,
2005). Extrinsic motivation is the drive of behaviors to achieve
valued outcomes that are distinct from the activity itself such as
external rewards, benefits, punishments, or obligations (Hen-
nessey et al., 2005; Deci et al., 1985). Intrinsic motivation is the
satisfaction gained from performing the behavior (Hennessey et
al., 2005). Literature in educational psychology asserts that stu-
dent motivation is a significant factor in e-learning (Cain, 2008).
Both intrinsic and extrinsic motivations can be conceptualized
and measured as influential indicators for students’ satisfaction,
enjoyment and excitement (Young, 2005). Students are having
different wants, needs, and beliefs regarding the amount of
Copyright © 2013 SciRes. 23
effort they spend in completing a degree program. For instance,
students may select the e-learning because they need to be at
home during a particular class time or they may be unable to
attend college except by an online learning method. With this
flexible format of learning, self-motivation seems to be manda-
tory (Cain, 2008). Cain (2008) found that the main cause of the
incompletion of an e-learning program is poor student motiva-
tion. A high motivation level is necessary for students to be
successful in e-learning (Cain, 2008; Ergul, 2004). In other
words, students who are motivated will perceive greater success
and satisfaction than those who are not (Zurita et al., 2007).
Therefore, the following hypothesis has been developed:
H5: Motivation has a positive effect using e-learning at
Students’ Perceived Satisfaction
Satisfaction is widely accepted as a desirable outcome of any
product or service experience (Siritongthaworn et al., 2006). In
e-learning, satisfaction is an important indicator of success.
Many studies indicated that user satisfaction is the key prede-
cessor to predict success of a particular technology (Delone et
al., 2003), or to predict a users’ behavior of using such tech-
nology (Bhattacherjee, 2001). When students use e-learning,
they tend to experience a new learning environment through
many activities, such as the engagement in discussion board
postings or online group assignments or exercises (Glass et al.,
2008), which enhances their proactive thinking and learning.
This engagement can increase the students’ satisfaction with
using e-learning (Glass et al., 2008). Therefore, the following
hypothesis has been developed:
H6: The e-learning has a positive effect on the students’
perceived satisfaction at AOU.
Students’ Performance
Students’ performance can be measured with the presence of
a number of indicators including successful completion of or
withdrawing a course, improved grades and building knowl-
edge and skills (Coldwell et al., 2008). For the purpose of this
study, performance is defined by the level of learning, level of
understanding, built skills, and expected grades. It has been
shown in previous studies that students enrolled on e-learning
courses perform better than those enrolled in traditional sche-
mes (Singh et al., 2005; Coldwell et al., 2008). Intel Corpora-
tion (2009) conducted a study on the positive impact of e-learn-
ing, and more than 80 percent of teachers surveyed said that
students were more engaged and more actively involved in their
learning and produced higher quality work. This supports the
results of the study by Alstete and Beutell (2004), which indi-
cated that the active participation and involvement of students
using e-learning is positively and significantly related to overall
course performance for MBA students.
Therefore, the following hypothesis has been developed:
H7: The e-learning has a positive effect on the students’
performance at AOU.
Research Methodology
The study sample is comprised of postgraduate students en-
rolled in the AOU the Kingdom of Bahrain branch. The AOU
offers two Master programs one in the Information Systems and
the other in the Business administration. Two hundred surveys
were distributed both in person and as a web survey. Only one
hundred and fifty completed questionnaires were returned, 70
of them were completed using the web survey. The survey in-
strument provides a response rate of 75% which is considered
as very high rate bearing in mind the difficulty in getting the
permission to conduct the survey in the university. In addition,
many students refused to answer the questionnaire either be-
cause they were very busy or they were not interested.
The survey instruments for this study was developed using
validated items from the prior researches. As such, scales for
measuring motivation, student-students interaction and stu-
dent-instructor interaction were developed by adopting items
from the measurements of (Cain, 2008; Sher, 2009; O’malley et
al., 1999). The measurement for students’ performance and
students’ perceived satisfaction was developed by adopting
items from (O’Malley et al., 1999; Lee et al., 2009; Lee et al.,
2008). Scales of using e-learning was developed by the authors
for the purpose of the current research. Most of the items were
measured on a five-point Likert-scale anchored at both ex-
tremes to 1 (strongly disagree) and 5 (strongly agree). The mid-
point (3) represents the state of unsure or “neutral”.
Data Collection and Research Variables
Demographic characteristics of the overall participants are
presented in Tables 1-5. Most of the postgraduate students that
participated in the current research are male (63.30%), are from
Kingdom of Saudi Arabia (51.3%) or Kingdom of Bahrain
(35.3%) and are mature (age between 25 and 40) (84%) as
shown in Tables 1 and 2. Moreover, most of the participants
are married (71%) and are working (89%) (Tables 3 and 4).
The majority of the worked participants are married (66%) and
from Kingdom of Saudi Arabia (57%) as shown in Table 3 and
Table 4. On the other hand, the results show that most of the
participants are studying business administration (80%) as
shown in Table 5.
Table 1.
Selected characteristic of the sample (nationality and gender).
Bahraini Saudi Kuwaiti Other
Male 12.70% 42.70% 0.70% 7.30% 63.30%
Female 22.70% 8.70% 0.00% 5.30% 36.70%
Total 35.30% 51.30% 0.70% 12.70%100%
Table 2.
Selected characteristic of the sample (age).
Age %
Less than 25 7.50%
Between 25 and 30 42.70%
Between 30 and 35 25.30%
Between 35 and 40 16.00%
More than 40 8.70%
Total 100%
Copyright © 2013 SciRes.
Table 3.
Selected characteristic of the sample (working status and country of
Having a job (are you working?)
Country of residence (%)
Bahrain Saudi Arabia Kuwait Other
Yes 37.30 51.30 0.70 0 89.3
Having a job
No 4.00 6.0 0.0 0.70 10.7
Total 41.30 57.3 0.7 0.70 100.0
Table 4.
Selected characteristic of the sample (marital and working status).
Having a job (are you working?)
Yes No
Single 23.30% 5.30% 28.70%
Married 66.00% 5.30% 71.30%
Total 89.30% 10.70% 100.00%
Table 5.
Selected characteristic of the sample (field of study).
Field of study %
Information technology 20.00%
Business administration 80.00%
Model Measurements Assessment
The strength of the measurement model is determined by its
reliability and validity. Cronbach’ alpha was used to assess the
reliability value of each dimension as demonstrated in Table 6.
All the reliability values are higher than 0.7.
Moreover, to assess the convergent validity confirmatory
factor analysis with Varimax rotation was conducted to assess
the underlying structure for the items of each research construct.
The loading of each factor should be greater than or equal to
0.5 which has been achieved. Results are shown in Tables 7
and 8.
Hypotheses Testing
To test the research model regression analyses were con-
ducted. The first regression analysis was performed to test the
relationships between student-student interaction, student-in-
structor interaction and motivation in a way to examine the
indirect impact of social interaction on the e-learning as shown
in Table 9.
The results show that student-student interaction (β = 0.187, t
= 2.166), and student-instructor interaction (β = 0.376, t =
4.353) have a positive effect on motivation. The results indicate
that student-instructor interaction has more impact on the mo-
tivation than that of student-student interaction. Thus the 26%
of the variance on the motivation is caused mostly by stu-
dents-instructor interaction as shown in Table 10.
The second regression analysis was conducted to test the di-
rect impact of the student-student interaction and student-in-
structor interaction on the using e-learning. In addition it will
examine the relationship between motivation and using e-learn-
ing as shown in Table 9. The results demonstrated that both
student-student interaction and motivation have a significant
effect on using e-learning (β = 0.140, t = 2.837) and (β = 0.815,
t = 17.578) respectively. The results however, indicate that
student-instructor interaction has no direct effect on using e-
learning (β = 0.009, t = 0.170). The results whereas more-
over, reveal that 77% of the variance in using e-learning is
caused mostly by motivation.
The other regression analyses were conducted to test the im-
pact of using e-learning on both students’ perceived satisfaction
and students’ performance. The results are shown Table 9. The
results demonstrated that the e-learning has a significant impact
on both students’ perceived satisfaction (β = 0.486, t = 6.768)
and students’ performance (β = 0.383, t = 5.039). The model
Table 6.
Results for reliability analysis.
Construct Cronbach’s alpha
E-learning 0.854
Student-instructor interaction 0.759
Student-student interaction 0.786
Motivation 0.833
Perceived satisfaction 0.892
Performance 0.906
Table 7.
Results for factor analysis.
Factor Items Loading of each factor
M_1 0.649
M_3 0.829
M_4 0.831
M_5 0.783
M_6 0.797
S_1 0.701
S_2 0.675
S_3 0.690
S_4 0.851
S_5 0.892
S_6 0.824
S_7 0.851
P_1 0.815
P_2 0.873
P_3 0.776
P_4 0.884
P_5 0.840
P_6 0.770
Copyright © 2013 SciRes. 25
Table 8.
Results for factor analysis (continue).
Factor Items Loading of each factor
EL_1 0.828
EL_2 0.625
EL_3 0.761
EL_4 0.807
EL_5 0.746
EL_6 0.811
SII_1 0.681
SII_5 0.765
SII_6 0.810
SII_8 0.789
SS_2 0.788
SS_3 0.818 Student-student interaction
SS_4 0.907
Table 9.
Model testing results.
Hypothesis β t Status
H1 Student-instructor interaction
use of e-learning 0.009 0.170 Rejected
H2 Student-student interaction
use of e-learning 0.140 2.837 Accepted
H3 Student-instructor interaction
motivation 0.376 4.353 Accepted
H4 Student-student interaction
motivation 0.187 2.165 Accepted
H5 Motivation e-learning 0.815 17.578 Accepted
H6 Use of e-learning students’
perceived satisfaction 0.486 6.768 Accepted
H7 Use of e-Learning students’
performance 0.383 5.039 Accepted
Table 10.
Explanation of variance.
Factor R2
Motivation 0.247
Use of e-learning 0.672
Students’ perceived satisfaction 0.231
Students’ performance 0.141
moreover, explained low variance of students’ perceived satis-
faction and students’ performance. Thus, e-learning caused
only 23% of the variance in students’ perceived satisfaction and
14% of the variance in the students’ performance as demon-
strated in Table 10.
Discussion and Conclusion
The current research was conducted to achieve two main ob-
jectives. The first objective was to investigate the factors af-
fecting the use of e-learning by the postgraduate students at the
AOU. The second main objective was to examine the impact of
using e-learning on the students’ perceived satisfaction and
performance. The research findings revealed that most of the
hypotheses investigated were strongly supported, except for
that related to the direct effect of student-instructor interaction
on using e-learning.
The findings of the current research provide a great indica-
tion about the using of e-learning at the AOU. The results re-
vealed that 37% of the participants were females. The results
indicate that the percentage of women using e-learning is ac-
ceptable peering in mind their duties as wives and mothers in
addition to their employment commitments. The results con-
firm that the e-learning is attracting women especially in the
context of the Arab countries. Women in such countries try to
involve in a virtual learning environment whenever they find it
difficult to enroll in a traditional and physical learning envi-
ronment. Moreover, the results revealed that around 84% of the
total respondents were in the age range of 25 and 40 years, in
which the students are more mature and self-directed. Older
students are more likely to engage in e-learning than younger
students because younger students are still dependent and need
to be directed and advised by the others such as their instructors
(Coldwell et al., 2008). In addition, the results show that around
71% of the respondents are married, and almost 90% of them
are working. This is supporting the opinion of Mrs. Dana
Lori’s—an examination administrator at AOU—on the enrolled
students at AOU. Mrs. Dana demonstrates that most of the
postgraduate students favor the e-learning method provided by
AOU because they are married and working. They find this
learning system a good opportunity to save their time, provid-
ing them with the required learning resources, and allowing
them to attend online sessions. Thus, they can have an enough
space to finish their desired degree while taking care of their
homes, children, and work duties. In addition, Mrs. Dana states
that students are favoring the e-learning method provided by
AOU because most of them are Saudis and are not living in
Bahrain which has been supported by the findings of the current
research. The results indicate that almost half of the respon-
dents (51.0%) are Saudis, and 57.3% are not living in Bahrain.
Finally, the results revealed that almost 80% of the respondents
were registered in the Business Administration, and that 44% of
them were in the second year of their study. Information sys-
tems sometimes are found to be a more complicate and difficult
subject to be studied in a distance learning system without the
support of the physical learning environment.
Results on the research model and hypotheses show that the
motivation is the main factor that has the most significant im-
pact on using e-learning at the AOU, followed by student-stu-
dent interaction. Motivation is predicted to be an effectual fac-
tor for using e-learning (Cain, 2008; Ergul, 2004; Smith, 2010).
A high level of motivation is necessary for students to be suc-
cessful in e-learning environment (Ergul, 2004). Motivation is
“the internal force that drives an individual to move toward the
goal after perceiving a plan” (Lee et al., 2010). If the students
are motivated they will be encouraged to be effectively in-
volved in the learning process and gain the expected success.
Regarding the direct and indirect impact of the social interac-
tion on using e-learning, the results demonstrate that student-
student interaction shows significant direct and indirect impact
via the motivation on using e-learning. The results moreover,
Copyright © 2013 SciRes.
indicate that student-instructor interaction has no direct effect
on using e-learning. However, via its impact on the motivation,
student-instructor interaction can indirectly impact the using of
e-learning. These findings confirm the importance of the face-
to-face interaction and the social communication for students’
involvement in a learning process as a part of the Arab culture.
The findings finally demonstrate that using e-learning by
students at AOU has a positive and significant effect on both
students’ perceived satisfaction and students’ performance. E-
learning was found to have a positive impact on students’ per-
formance as it can increase the student engagement and motiva-
tion (Coldwell et al., 2008). Moreover, when students engage in
an e-learning program, they are looking for building learning
experiences and knowledge (Siritongthaworn et al., 2006) through
accessing online resources and gaining new technical skills
(Cain, 2008), which increase their satisfaction (Glass et al.,
E-learning has become an integral part of higher education in
which universities can no longer ignore this new learning envi-
ronment. Therefore, in order to improve persistence in e-learn-
ing programs, as well as increase the e-learners satisfaction and
performance, educational institutes need to address the factors
that may impact the using of e-learning. Educational institu-
tions thus, need to support and motivate students when making
the adjustment to learning through such different learning en-
vironment. Students’ motivation needs to be enhanced by en-
couraging the social interaction both between student-student
and student-instructor interaction and facilitating the learning
within social and community based environment. Moreover, a
learning strategy needs to be developed with a goal of increas-
ing students’ retention by providing an effective academic and
technical support and promoting a sense of social community.
Teachers’ presence needs also to be enhanced. The positive
behaviors are important in delivering successful e-learning,
increased student satisfaction and improved performance.
Alstete, J., & Beutell, N. (2004). Performance indicators in online dis-
tance learning courses: A study of management education. Journal of
Quality Assurance in Education, 12, 6-14.
Baker, G. (2010). The impact of instructor immediacy and presence for
online student affective learning, cognition, and motivation. The
Journal of Educators O n li n e , 7.
Bernard, R., Abrami, P., Lou, Y., Borokhovski, E., Wade, A., Wozney,
L., Wallet, P., Fiset, M., & Huang, B. (2004). How does distance
education compare to classroom instruction? A meta-analysis of the
empirical literature. Review of Educational Research, 74, 379-439.
Bhattacherjee, A. (2001). Understanding information systems continu-
ance: An expectation-confirmation model. MIS Quarterly, 25, 351-
Bruner, J. (1960). The process of education. Cambridge, MA: Harvard
University Press.
Bruner, J. (1966). Toward a theory of instruction. Cambridge, MA:
Harvard University Press.
Busch, T. (1995). Gender differences in self-efficacy and attitudes to-
ward computers. Journal of Educational Computing Research, 12,
Cain, J. (2008). An analysis of motivation orientations and social in-
teractions on successful and poor learners in an e-learning environ-
ment. Doctoral Dissertation, Tui University, College of Education,
Available Online at ProQuest.
Cao, J., Crews, J., Lin, M., Burgoon, J., & Nunamakr, J. (2008). An
empirical investigation of virtual interaction in supporting learning.
The DATA BASE for Advance s i n Information Systems, 39, 51-68.
Certo, S., & Certo, S. (2006). Modern management (10th ed.). New
Jersy: Pearson Prentice Hall.
Colaric, S., & Jonassen, D. (2001). Information equals knowledge,
searching equals learning, and hyperlinking is good instruction:
Myths about learning from the World Wide Web. In C. D. Maddux,
& D. L. Johnson (Eds.), The web in higher education: Assessing the
impact and fulfilling the potential (pp. 159-169). New York: Ha-
Coldwell, J., Craig, A., Paterson, T., & Mustard, J. (2008). Online
students: Relationships between participation, demographics and aca-
demic performance. The Electronic Journal of e-Learning, 6, 19-30.
Deci, E., & Ryan, R. (1985). Intrinsic motivation and self-determina-
tion in human behavior. New York: Plenum.
DeLone, W., & McLean, E. (2003). The DeLone and McLean model of
information systems success: A ten year update. Journal of Man-
agement Information Systems, 19, 9-30.
Ergul, H. (2004). Relationship between student characteristics and aca-
demic achievement in distance education and application on students
of Anadolu University. Turkish Online Journal of Distance Educa-
tion, 5, 81-90.
Freire, P. (1994). Pedagogy of the oppressed (3rd ed.). New York: Con-
tinuum Publishing Company.
Glass, J., & Sue, V. (2008). Student preference, satisfaction, and per-
ceived learning. MERLOT Journal of Online Learning and Teaching,
4, 325-338.
Hammoud, L., Love, S., & Brinkman, W. (2008). The affect of lectur-
ers’ attitude on students’ use of an online learning environment. Pro-
ceeding of the 15th European Conference on Cognitive Ergonomics:
The Ergonomics of Cool I nte r action, Portugal.
Hennessey, B., & Amabile, T. (2005). Extrinsic and intrinsic motiva-
tion. Blackwell, Encyclopedic Dictionary of Organizational Behavior,
Hong, K. (2002). Relationships between students’ and instructional va-
riables with satisfaction and learning from a Web-based course. In-
ternet and Higher Education, 5, 267-281.
Ilias, K., & Nor, M. (2012). Influence of teacher-student interaction in
the classroom behavior on academic and student motivation in tea-
chers’ training institute in Malaysia. Academic Research Interna-
tional, 2.
Intel Corporation (2010). The positive impact of elearning.
Lee, B., Yoon, J., & Lee, I. (2009). Learners’ acceptance of e-learning
in South Korea: Theories and results. Journal of Computers & Edu-
cation, 53, 1320-1329.
Lee, J., & Lee, W. (2008). The relationship of e-learner’s self-regula-
tory efficacy and perception of e-Learning environmental quality.
Journal of Computers in Hu ma n Behavior, 24, 32-47.
Lee, L., & Kao, C. (2010). The effect of learning motivation, total
quality teaching and peer-assisted learning on study achiment: Em-
pirical analysis from Vocaland University or Colleges’ student in
Taiwan. The Journal of Human Resource Adault l e a r n in g , 6.
Lou, Y., Bernard, R., & Abrami, P. (2006). Media and pedagogy in
undergraduate distance education: A theory-based meta-analysis of
empirical literature. Educational Technology Research and Devel-
opment, 54, 141-176.
Miller, M. (2005). Usability in e-learning.
Moore, M. (1989). Three types of interaction. The American Journal of
Distance Education, 3, 1-6.
Moore, M., & Thompson, M. (1990). The effects of distance learning:
A summary of literature. ERIC Document Reproduction Service No.
Copyright © 2013 SciRes. 27
Copyright © 2013 SciRes.
ED330 321.
Murray, M., Perez, J., Geist, D., & Hedrich, A. (2012). Student interac-
tion with online course content: Build it and they might come. Jour-
nal of Information Education: Research, 11.
Neo, K. (2003). Using multimedia in a constructivist learning environ-
ment in the Malaysian classroom. Australian Journal of Educational
Technology, 19, 293-310.
Neo, M., & Neo, T. (2009). Engaging students in multimedia-mediated
constructivist learning—Students’ perceptions. Educational Technol-
ogy & Society, 12, 254-266.
O’Malley, J., & McCraw, H. (1999). Students’ perceptions of distance
learning, online learning and the traditional classroom. Online Jour-
nal of Distance Learning Admin i s tration, 2.
Paechter, M., Maier, B., & Macher, D. (2010). Students’ expectations
of, and experiences in e-learning: Their relation to learning achieve-
ments and course satisfaction. Journal of Computer & Education, 54,
Pask, G. (1995). Conversation, cognition, and learning. New York:
Price, L. (2004). Individual differences in learning: Cognitive control,
cognitive style, and learning style. Educational Psychology, 24, 681-
Roi, K. (2006). The impact of learning styles on interactivity in asyn-
chronous e-learning. Performance Improvement, 45, 21-26.
Rovai, A. (2002). Building sense of community at a distance. The In-
ternational Review of Research in Open and Distance Learn i ng, 3.
Rovai, A. P., & Barnum, K. (2003). On-line course effectiveness: An
analysis of student interactions and perceptions of learning. Journal
of Distance Education, 18, 57-73.
Selim, H. (2007). Critical success factors for e-learning acceptance:
Confirmatory factor models. Computer and Education, 49 , 396-413.
Sher, A. (2009). Assessing the relationship of student-instructor and
student-student interaction to student learning and satisfaction in
web-based online learning environment. Journal of Interactive On-
line Learning, 8, 102-120.
Singh, G., O’Donoghue, J., & Worton, H. (2005). A study into the ef-
fects of e-learning on higher education. Journal of University Teach-
ing and Learning Prac tice , 2, 13-24.
Singh, H. (2003). Building effective blended learning programs. Educa-
tional Technology, 43, 51-54.
Siritongthaworn, S., & Krairit, D. (2006). Satisfaction in e-learning:
The context of supplementary instruction. Campus-Wide Information
Systems Journal, 23, 76-91.
Smith, R. (2010). Motivational factors in e-learning.
Stash, N., Cristea, A., & De Bra, P. (2010). Adaptation to learning
styles in e-learning: Approach evaluation.
Sun, P., Tasi, R., Finger, G., Chen, Y., & Yen, D. (2008). What drives a
successful e-learning? An empirical investigation of critical factors
influencing learner satisfaction. Computer and Education, 50, 1183-
Teare, R. (2000). Modeling the virtual university. Journal of Workplace
Learning, 12, 111-123.
Thompson, A., & Strickland, A. (2001). Crafting and executing strat-
egy: Text and readings. New York: McGraw-Hill.
Volery, T., & Lord, D. (2002). Critical success factors in online edu-
cation. The International Journal of Educational Management, 14,
Wagner, E. (1994). In support of a functional definition of interaction.
The American Journal of Distance Education, 8, 6-29.
Wagner, N., Hassanein, K., & Head, M. (2008). Who is responsible for
e-learning success in higher education? A stakeholders’ analysis.
Educational Technology & Society, 11, 26-36.
Wanstreet, C. (2006). Interaction in online learning environments.
Quarterly Review of Distance Education, 7, 399-411.
Young, J. (2002). Online teaching redefines faculty members’ sche-
dules, duties, and relationships with students. Washington DC: Chro-
nicle of Higher Education.
Young, M. (2005). The motivational effects of the classroom environ-
ment in facilitating self-regulated learning. Journal of Marketing
Education, 27, 25-40.
Zhao, Y., Lei, J., Yan, B., Lai, C., & Tan, S. (2005). What makes the
difference? A practical analysis of research on the effectiveness of
distance education. The Teachers College Record, 107, 1836-1884.
Zurita, G., Baloian, N., Baytelman, F., & Farias, A. (2007). Develop-
ing motivating collaborative learning through participatory simula-
tions. In G. Goos, J. hartmanis, & J. V. Leeuwen (Eds.), Lecture
notes in computer science (p. 807). Heidelberg : Springer.