R. AKHTER ET AL.

Copyright © 2013 SciRes. AJCM

259

e for decreasing

[1] V. M. Soundalgekar and H. S. Takhar, “Radiative Con-

vective Flow Pical Plate,” Model-

ling Measurem, 1992, pp. 31-40.

tural Convection in a Porous Medium Embedded within

Vertical Annulus,” International Journal of Thermal Sci-

ence, Vol. 46, No. 3, 2007, pp. 221-227.

http://dx.doi.org/10.1016/j.ijthermalsci.2006.05.005

[7] S. C. Mishra, P. Talukdar, D. Trimis a nd F. Durst, “T

Dimensional Transient Conduction and Radiation

study can be listed as follows:

The velocity of the fluid within the boundary layer and

the skin friction at the interface increas

values of magnetic parameter, M, Prandtl number, Pr and

increasing values of the radiation parameter, Ra and

thermal conductivity variation parameter, γ.

The increasing value of M, Ra and γ leads to increase

in the value of temperature within the thermal boundary

layer as well as the surface temperature on the plate a

wo-

Heat

Transfer with Temperature Dependent Thermal Conduc-

tivity,” International Communications in Heat and Mass

Transfer, Vol. 32, No. 3-4, 2005, pp. 305-314.

http://dx.doi.org/10.1016/j.icheat ma sst ran sfer.200 4.05.01 5

[8] M. A. Seddeek and F. A. Salama, “The Effects of Tem-

peratute Dependent Viscosity and Thermal Conductivity

nd

the effect of M and Ra decrease heat transfer rate from

plate to fluid within the boundary layer but opposite re-

sults hold for increasing of γ and Pr.

REFERENCES

on Unsteady MHD Convective Heat Transfer Past a Semi-

Infinite Vertical Porous Moving Plate with Variable Suc-

tion,” Computational Material Science, Vol. 40, No. 2,

2007, pp. 186-192.

http://dx.doi.org/10.1016/j.commatsci.2006.11.012

[9] P. R. Sharma and G. Singh, “Effects of Variable Therm

Conductivity, Viscous Dissipation on Steady MHD

al

Natu-

ast a Semi-Infinite Vert

ent and Control, Vol. 51ral Convection Flow of Low Prandtl Fluid on an Inclined

Porous Plate with Ohmic Heating,” Meccanica, Vol. 45,

No. 2, 2010, pp. 237-247.

http://dx.doi.org/10.1007/s11012-009-9240-0

[10] P. Loganathan, P. Ganesan and D. Iranian, “

Thermal Conductivity on Unsteady MHD Fr

[2] A. C. Cogley, W. G. Vincenti and S. E. Giles, “Differen-

tial Approximation for Radiative in a Non-Gray Gas Near

Equilibrium,” American Institute of Aeronautics and As-

tronautics Journal, Vol. 6, No. 3, 1968, pp. 551-553.

http://dx.doi.org/10.2514/3.4538

[3] M. A. Hossain and H. S. Takhar, “Radiation Effect on

Mixed Convection along a Vertical Plate with Unifo

Surface Temperature,” Heat and Mass Transfer

Effects of

ee Convec-

Fluid Mechanics, Vol. 10,

tive Flow over a Semi Infinite Vertical Plate,” Interna-

tional Journal of Engineering Science and Technology,

Vol. 2, 2010, pp. 6257-6268.

[11] H. B. Keller, “Numerical Methods in the Boundary Layer

Theory,” Annual Review of

rm

, Vol. 31,

No. 4, 1996, pp. 243-248.

http://dx.doi.org/10.1007/BF02328616

[4] A. Y. Ghaly, “Radiation Effects on a Certain MHD Free

Convection Flow,” Chaos, Solitons &

No. 9, 2002, pp. 1843-1850.

1978, pp. 417-433.

http://dx.doi.org/10.1146/annurev.fl.10.010178.002221

[12] T. Cebeci and P. Bradshow, “Physical and Computation

Aspects of Convective Heat Transfer,” Springer, Ne

Fractals, Vol. 13,

al

w

http://dx.doi.org/10.1016/S0960-0779(01)00193-X

[5] M. A. Abd El-Naby, E. M. E. Elsayed and N. Y. Abde-

lazem, “Finite Difference Solution of Radiation Eff

MHD Unsteady Free Convection Flow over a V

York, 1984. http://dx.doi.org/10.1007/978-3-662-02411-9

[13] J. H. Merkin and I. Pop, “Conjugate Free Convection on a

Vertical Surface,” International Journal of Heat and

ect on

l ertica

Plate Variable Surface Temperature,” Journal of Applied

Mathematics, Vol. 2003, No. 2, 2003, pp. 65-86.

http://dx.doi.org/10.1155/S1110757X0320509X

[6] I. A. Badruddin, Z. A. Zainal, A. Zahid Khan and Z. Mal-

lick, “Effect of Viscous Dissipation and Radiation

Mass Transfer, Vol. 39, No. 7, 1996, pp. 1527-1534.

http://dx.doi.org/10.1016/0017-9310(95)00238-3

on Na-

Nomenclature

T: Temperature of the fluid

x

C: Local skin friction coefficient

C: Specific heat at constant pressure

imensionless stream function f: D

g: Acceleration due to gravity

Gr : Grashof number

h: Derature imensionless temp

k,

k: Fluid and solid thermal conductivities

M: Magnetic parameter

Nux: Local Nusselt number

p: Conjugate conduction parameter

Pr: Prandtl number

u, v: Velocity components

v: Dimensionless velocity cou, mponents

, : Cartesian co-ordinates

x, y: Dimensionless Cartesian co-ordinate

β:oeion

γ: Thermal conductivity variation paramete

Cfficient of thermal expansr

es

η: Dimensionless similarity variable

θ: Dimensionless temperature

μ, v: Dynamic and kinematic viscositi

ρ: Density of the fluid

σ: Electrical conductivity