
C. Dong et al. / Agricultural Sciences 4 (2013) 466-472
472
[4] Dong, C., Zhang, Z., Qin, Y., Ren, J., Huang, J., Wang, B.
and Tao, J. (2013) VaCBF1 from Vitis amurensis associ-
ated with cold acclimation and cold tolerance. Acta Phy-
siologiae Plantarum, in press.
doi:10.1007/s11738-013-1329-3
[5] Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Tho-
mashow, M.F. and Zhang, J.Z. (2002). Transcription fac-
tor CBF4 is a regulator of drought adaptation in Arabi-
dopsis. Plant Physiology, 130, 639-648.
doi:10.1104/pp.006478
[6] Jaglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake,
V., Zhang, J.Z. and Thomashow, M.F. (2001) Compo-
nents of the Arabidopsis C-repeat/dehydration-responsive
element binding factor cold-response pathway are con-
served in Brassica napus and other plant species. Plant
Physiol, 127, 910-917. doi:10.1104/pp.010548
[7] Lagonigro, M.S., De Cecco, L., Carninci, P., Di Stasi, D.,
Ranzani, T., Rodolfo, M. and Gariboldi, M. (2004) CTAB-
urea method purifies RNA from melanin for cDNA mi-
croarray analysis. Cell Research and the International
Pigment Cell Society, 17, 312-315.
doi:10.1111/j.1600-0749.2004.00155.x
[8] Liu, J.G., Zhang, Z., Qin, Q.L., Peng, R.H., Xiong, A.S.,
Chen, J.M. and Yao, Q.H. (2007) Isolated and characteri-
zation of a cDNA encoding ethylene-responsive element
binding protein (EREBP)/AP2-type protein, RCBF2, in
Oryza sativa L. Biotechnology Letters, 29, 165-173.
doi:10.1007/s10529-006-9214-4
[9] Novillo, F., Alonso, J. M., Ecker, J. R., & Salinas, J.
(2004). CBF2/DREB1C is a negative regulator of CBF1/
DREB1B and CBF3/DREB1A expression and plays a
central role in stress tolerance in Arabidopsis. Proceed-
ings of the National Academy of Sciences of USA, 101,
3985-3990. doi:10.1073/pnas.0303029101
[10] Novillo, F., Medina, J. and Salinas, J. (2007) Arabidopsis
CBF1 and CBF3 have a different function than CBF2 in
cold acclimation and define different gene classes in the
CBF regulon. Proceedings of the National Academy of
Sciences of USA, 104, 21002-21007.
doi:10.1073/pnas.0705639105
[11] Polashock, J.J. (2010) Functional identification of a C-
repeat binding factor transcriptional activator from blue-
berry associated with cold acclimation and freezing tol-
erance. Journal of the American Society for Horticultural
Science, 135, 40-48.
[12] Puhakainen, T., Li, C., Boije-Malm, M., Kangasjarvi, J.,
Heino, P. and Palva, E.T. (2004) Short-day potentiation of
low temperature-induced gene expression of a C-repeat-
binding factor-controlled gene during cold acclimation in
silver birch. Plant Physiology, 136, 4299-4307.
doi:10.1104/pp.104.047258
[13] Ruelland, E., Vaultier, M.-N. Zachowski, A. and Hurry, V.
(2009) Cold signalling and cold acclimation in plants.
Advances in Botanical Research, 49, 35-150.
doi:10.1016/S0065-2296(08)00602-2
[14] Shinozaki, K. and Yamaguchi-Shinozaki, K. (2000) Mo-
lecular responses to dehydration and low temperature:
Differences and cross-talk between two stress signaling
pathways. Current Opinion in Plant Biology, 3, 217-223.
[15] Stockinger, E.J., Gilmour, S.J. and Thomashow, M.F.
(1997) Arabidopsisthaliana CBF1 encodes an AP2 do-
main-containing transcriptional activator that binds to the
C-repeat/DRE, a cis-acting DNA regulatory element that
stimulates transcription in response to low temperature
and water deficit. Proceedings of the National Academy
of Sciences of the USA, 94, 1035-1040.
doi:10.1073/pnas.94.3.1035
[16] Thomashow, M.F. (1999) Plant cold acclimation: Freez-
ing tolerance genes and regulatory mechanisms. Annual
Review of Plant Physiology and Plant Molecular Biology,
50, 571-599. doi:10.1146/annurev.arplant.50.1.571
[17] Wisniewski, M., Norelli, J., Bassett, C., Artlip, T. and
Macarisin, D. (2011) Ectopic expression of a novel peach
(Prunuspersica) CBF transcription factor in apple (Malus
x domestica) results in short-day induced dormancy and
increased cold hardiness. Planta, 233, 971-983.
doi:10.1007/s00425-011-1358-3
[18] Xiao, H., Siddiqua, M., Braybrook, S. and Nassuth, A.
(2006) Three grape CBF/DREB1 genes respond to low
temperature, drought and abscisic acid. Plant Cell Envi-
ronment, 29, 1410-1421.
doi:10.1111/j.1365-3040.2006.01524.x
[19] Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994) A
novel cis-acting element in an Arabidopsis gene is in-
volved in responsiveness to drought, low-temperature, or
high-salt stress. The Plant Cell Online, 6, 251-264.
doi:10.1105/tpc.6.2.251
[20] Yamaguchi-Shinozaki, K. and Shinozaki, K. (2005) Or-
ganization of cis-acting regulatory elements in osmotic-
and cold-stress-responsive promoters. Trends Plant Sci-
ence, 10, 88-94. doi:10.1016/j.tplants.2004.12.012
[21] Yang, W., Liu, X.D., Chi, X.J., Wu, C.A., Li, Y.Z., Song,
L.L. and Li, H.Y. (2011) Dwarf apple MbDREB1 en-
hances plant tolerance to low temperature, drought, and
salt stress via both ABA-dependent and ABA-indepen-
dent pathways. Planta, 233, 219-229.
doi:10.1007/s00425-010-1279-6
Copyright © 2013 SciRes. OPEN ACCESS