K. POURAKBAR SAFFAR ET AL.
20
504-511. doi:10.1016/j.jmbbm.2010.05.007
[12] K.-T. Lau and D. Hui, “The Revolutionary Creation of
New Advanced Materials-Carbon Nanotube Composites,”
Composites Part B: Engineering, Vol. 33, No. 4, 2002, pp.
263-277. doi:10.1016/S1359-8368(02)00012-4
[13] K. I. Tserpes, P. Papanikos and S. A. Tsirkas, “A Pro-
gressive Fracture Model for Carbon Nanotubes,” Com-
posites: Part B: Engineering, Vol. 37, No. 7-8, 2006, pp.
662-669. doi:10.1016/j.compositesb.2006.02.024
[14] V. A. Buryachenko and A. Roy, “Effective Elastic Moduli
of Nanocomposites with Prescribed Random Orientation
of Nanofibers,” Composites Part B: Engineering, Vol. 36,
No. 5, 2005, pp. 405-416.
doi:10.1016/j.compositesb.2005.01.003
[15] W. Wei, A. Sethuraman, C. Jin, N. A. Monteiro-Riviere
and R. J. Narayan, “Biological Properties of Carbon
Nanotubes,” Journal of Nanoscience and Nanotechnology,
Vol. 7, No. 4-5, 2007, pp. 1284-1297.
doi:10.1166/jnn.2007.655
[16] S. K. Smart, A. I. Cassady, G. Q. Lu and D. J. Martin,
“The Biocompatibility of Carbon Nanotubes,” Carbon,
Vol. 44, No. 6, 2006, pp. 1034-1047.
doi:10.1016/j.carbon.2005.10.011
[17] L. P. Zanello, B. Zhao, H. Hu and R. C. Haddon, “Bone
Cell Proliferation on Carbon Nanotubes,” Nano Letters,
Vol. 6, No. 3, 2006, pp. 562-567. doi:10.1021/nl051861e
[18] B. Zhao, H. Hu, S. K. Mandal and R. C. Haddon, “A
Bone Mimic Based on the Self-Assembly Of Hydroxya-
patite on Chemically Functionalized Single-Walled Car-
bon Nanotubes,” Chemical Materials, Vol. 17, No. 12,
2005, pp. 3235-3241. doi:10.1021/cm0500399
[19] K. PourAkbar Saffar, A. R. Arshi, N. Jamilpour, A.
Raeisi Najafi, G. Rouhi and L. Sudak, “A Cross-Linking
Model for Estimating Young ’s Modulus of Artificial Bone
Tissue Grown on Carbon Nanotube Scaffold,” Journal of
Biomedical Materials Research Part A, Vol. 94A, No. 2,
2010, pp. 594-602. doi:10.1002/jbm.a.32737
[20] A. A. White, S. M. Best and I. A. Kinloch, “Hydroxyapa-
tite-Carbon Nanotube Composites for Biomedical Appli-
cations: A Review,” International Journal of Applied
Ceramic Technology, Vol. 4, No. 1, 2007, pp. 1-13.
doi:10.1111/j.1744-7402.2007.02113.x
[21] Y. Chen, Y. Q. Zhang, T. H. Zhang, C. H. Gan, C. Y.
Zheng and G. Yu, “Carbon Nanotube Reinforced Hy-
droxyapatite Composite Coatings Produced through Laser
Surface Alloying,” Carbon, Vol. 44, No. 1, 2006, pp. 37-
45. doi:10.1016/j.carbon.2005.07.011
[22] B. Marrs, R. Andrews, T. Rantell and D. Pienkowski,
“Augmentation of Acrylic Bone Cement with Multiwall
Carbon Nanotubes,” Journal of Biomedical Materials
Research Part A, Vol. 77, No. 2, 2006, pp. 269-276.
doi:10.1002/jbm.a.30651
[23] A. A. Gawandi, J. M. Whitney, R. B. Brockman and G. P.
Tandon, “Interaction between a Nanofiber and an Arbi-
trarily Oriented Crack,” Journal of Composite Materials,
Vol. 42, No. 1, 2008, pp. 45-68.
[24] A. A. Gawandi, J. M. Whitney, G. P. Tandon and R. B.
Brockman, “Three-Dimensional Analysis of the Interac-
tion between a Matrix Crack and Nanofiber,” Composites
Part B: Engineering, Vol. 40, No. 8, 2009, pp. 698-704.
doi:10.1016/j.compositesb.2009.04.001
[25] C. Atkinson, “On the Stress Intensity Factors Associated
with the Cracks Interacting with an Interface between
Two Elastic Media,” International Journal of Engineer-
ing Science, Vol. 13, No. 5, 1975, pp. 487-504.
doi:10.1016/0020-7225(75)90018-X
[26] A. Romeo and R. A. Ballarini, “A Crack Very Close to a
Bimaterial Interface,” ASME Journal of Applied Me-
chanics, Vol. 62, No. 3, 1995, pp. 614-619.
doi:10.1115/1.2895990
[27] Z. Li and L. Yang, “The Near-Tip Stress Intensity Factor
for a Crack Partially Penetrating an Inclusion,” Journal of
Applied Mechanics, Vol. 71, No. 4, 2002, pp. 465-469.
doi:10.1115/1.1651539
[28] P. S. Steif, “A Semi-Infinite Crack Partially Penetrating a
Circular Inclusion,” Journal of Applied Mechanics, Vol.
54, No. 1, 1987, pp. 87-92. doi:10.1115/1.3172999
[29] A. Raeisi Najafi, A. R. Arshi, M. R. Eslami, S. Fariborz
and M. H. Moeinzadeh, “Haversian Cortical Bone Model
with Many Radial Microcracks: An Elastic Analytic So-
lution,” Medical Engineering and Physics, Vol. 29, No. 6,
2007, pp. 708-717.
doi:10.1016/j.medengphy.2006.08.001
[30] A. Raeisi Najafi, A. R. Arshi, K. PourAkbar Saffar, M. R.
Eslami, S. Fariborz and M. H. Moeinzadeh, “A Fiber-
Ceramic Matrix Composite Material Model for Osteonal
Cortical Bone Micromechanics Fracture: General Solu-
tion of Microcracks Interaction,” Journal of the Mecha-
nical Behavior of Biomedical Materials, Vol. 2, No. 3,
2009, pp. 217-223. doi:10.1016/j.jmbbm.2008.06.003
[31] N. A. Noda, Y. Takase and T. Hamashima, “Generalized
Stress Intensity Factors in the Interaction within a Rec-
tangular Array of Rectangular Inclusions,” Archive of
Applied Mechanics, Vol. 73, No. 5-6, 2003, pp. 311-322.
doi:10.1007/s00419-002-0249-2
[32] Y. Qiao, X. Kong and E. Pan, “Fracture Toughness of
Thermoset Composites Reinforced by Perfectly Bonded
Impenetrable Short Fiber,” Engineering Fracture Me-
chanics, Vol. 71, No. 18, 2004, pp. 2621-2633.
doi:10.1016/j.engfracmech.2004.02.007
[33] M. B. Bush, “The interaction between a Crack and a Par-
ticle Cluster, ” International Journal of Fracture, Vol. 88,
No. 3, 1997, pp. 215-232.
doi:10.1023/A:1007469631883
[34] K. Kim and L. J. Sudak, “Interaction between a Radial
Matrix Crack and a Three-Phase Circular Inclusion with
Imperfect Interface in Plane Elasticity,” International
Journal of Fracture, Vol. 131, No. 2, 2005, pp. 155-172.
doi:10.1007/s10704-004-3636-6
[35] P. G. Park and L. J. Sudak, “Stress Intensity Factor for an
Interphase Crack Interacting with Two Imperfect Inter-
faces,” Mathematics and Mechanics of Solids, Vol. 15,
No. 3, 2010, pp. 353-367.
doi:10.1177/1081286508101512
[36] G. D. Seidel and D. C. Lagoudas, “Micromechanical
Analysis of the Effective Elastic Properties of Carbon
Copyright © 2013 SciRes. WJM