K. POURAKBAR SAFFAR ET AL.

20

504-511. doi:10.1016/j.jmbbm.2010.05.007

[12] K.-T. Lau and D. Hui, “The Revolutionary Creation of

New Advanced Materials-Carbon Nanotube Composites,”

Composites Part B: Engineering, Vol. 33, No. 4, 2002, pp.

263-277. doi:10.1016/S1359-8368(02)00012-4

[13] K. I. Tserpes, P. Papanikos and S. A. Tsirkas, “A Pro-

gressive Fracture Model for Carbon Nanotubes,” Com-

posites: Part B: Engineering, Vol. 37, No. 7-8, 2006, pp.

662-669. doi:10.1016/j.compositesb.2006.02.024

[14] V. A. Buryachenko and A. Roy, “Effective Elastic Moduli

of Nanocomposites with Prescribed Random Orientation

of Nanofibers,” Composites Part B: Engineering, Vol. 36,

No. 5, 2005, pp. 405-416.

doi:10.1016/j.compositesb.2005.01.003

[15] W. Wei, A. Sethuraman, C. Jin, N. A. Monteiro-Riviere

and R. J. Narayan, “Biological Properties of Carbon

Nanotubes,” Journal of Nanoscience and Nanotechnology,

Vol. 7, No. 4-5, 2007, pp. 1284-1297.

doi:10.1166/jnn.2007.655

[16] S. K. Smart, A. I. Cassady, G. Q. Lu and D. J. Martin,

“The Biocompatibility of Carbon Nanotubes,” Carbon,

Vol. 44, No. 6, 2006, pp. 1034-1047.

doi:10.1016/j.carbon.2005.10.011

[17] L. P. Zanello, B. Zhao, H. Hu and R. C. Haddon, “Bone

Cell Proliferation on Carbon Nanotubes,” Nano Letters,

Vol. 6, No. 3, 2006, pp. 562-567. doi:10.1021/nl051861e

[18] B. Zhao, H. Hu, S. K. Mandal and R. C. Haddon, “A

Bone Mimic Based on the Self-Assembly Of Hydroxya-

patite on Chemically Functionalized Single-Walled Car-

bon Nanotubes,” Chemical Materials, Vol. 17, No. 12,

2005, pp. 3235-3241. doi:10.1021/cm0500399

[19] K. PourAkbar Saffar, A. R. Arshi, N. Jamilpour, A.

Raeisi Najafi, G. Rouhi and L. Sudak, “A Cross-Linking

Model for Estimating Young ’s Modulus of Artificial Bone

Tissue Grown on Carbon Nanotube Scaffold,” Journal of

Biomedical Materials Research Part A, Vol. 94A, No. 2,

2010, pp. 594-602. doi:10.1002/jbm.a.32737

[20] A. A. White, S. M. Best and I. A. Kinloch, “Hydroxyapa-

tite-Carbon Nanotube Composites for Biomedical Appli-

cations: A Review,” International Journal of Applied

Ceramic Technology, Vol. 4, No. 1, 2007, pp. 1-13.

doi:10.1111/j.1744-7402.2007.02113.x

[21] Y. Chen, Y. Q. Zhang, T. H. Zhang, C. H. Gan, C. Y.

Zheng and G. Yu, “Carbon Nanotube Reinforced Hy-

droxyapatite Composite Coatings Produced through Laser

Surface Alloying,” Carbon, Vol. 44, No. 1, 2006, pp. 37-

45. doi:10.1016/j.carbon.2005.07.011

[22] B. Marrs, R. Andrews, T. Rantell and D. Pienkowski,

“Augmentation of Acrylic Bone Cement with Multiwall

Carbon Nanotubes,” Journal of Biomedical Materials

Research Part A, Vol. 77, No. 2, 2006, pp. 269-276.

doi:10.1002/jbm.a.30651

[23] A. A. Gawandi, J. M. Whitney, R. B. Brockman and G. P.

Tandon, “Interaction between a Nanofiber and an Arbi-

trarily Oriented Crack,” Journal of Composite Materials,

Vol. 42, No. 1, 2008, pp. 45-68.

[24] A. A. Gawandi, J. M. Whitney, G. P. Tandon and R. B.

Brockman, “Three-Dimensional Analysis of the Interac-

tion between a Matrix Crack and Nanofiber,” Composites

Part B: Engineering, Vol. 40, No. 8, 2009, pp. 698-704.

doi:10.1016/j.compositesb.2009.04.001

[25] C. Atkinson, “On the Stress Intensity Factors Associated

with the Cracks Interacting with an Interface between

Two Elastic Media,” International Journal of Engineer-

ing Science, Vol. 13, No. 5, 1975, pp. 487-504.

doi:10.1016/0020-7225(75)90018-X

[26] A. Romeo and R. A. Ballarini, “A Crack Very Close to a

Bimaterial Interface,” ASME Journal of Applied Me-

chanics, Vol. 62, No. 3, 1995, pp. 614-619.

doi:10.1115/1.2895990

[27] Z. Li and L. Yang, “The Near-Tip Stress Intensity Factor

for a Crack Partially Penetrating an Inclusion,” Journal of

Applied Mechanics, Vol. 71, No. 4, 2002, pp. 465-469.

doi:10.1115/1.1651539

[28] P. S. Steif, “A Semi-Infinite Crack Partially Penetrating a

Circular Inclusion,” Journal of Applied Mechanics, Vol.

54, No. 1, 1987, pp. 87-92. doi:10.1115/1.3172999

[29] A. Raeisi Najafi, A. R. Arshi, M. R. Eslami, S. Fariborz

and M. H. Moeinzadeh, “Haversian Cortical Bone Model

with Many Radial Microcracks: An Elastic Analytic So-

lution,” Medical Engineering and Physics, Vol. 29, No. 6,

2007, pp. 708-717.

doi:10.1016/j.medengphy.2006.08.001

[30] A. Raeisi Najafi, A. R. Arshi, K. PourAkbar Saffar, M. R.

Eslami, S. Fariborz and M. H. Moeinzadeh, “A Fiber-

Ceramic Matrix Composite Material Model for Osteonal

Cortical Bone Micromechanics Fracture: General Solu-

tion of Microcracks Interaction,” Journal of the Mecha-

nical Behavior of Biomedical Materials, Vol. 2, No. 3,

2009, pp. 217-223. doi:10.1016/j.jmbbm.2008.06.003

[31] N. A. Noda, Y. Takase and T. Hamashima, “Generalized

Stress Intensity Factors in the Interaction within a Rec-

tangular Array of Rectangular Inclusions,” Archive of

Applied Mechanics, Vol. 73, No. 5-6, 2003, pp. 311-322.

doi:10.1007/s00419-002-0249-2

[32] Y. Qiao, X. Kong and E. Pan, “Fracture Toughness of

Thermoset Composites Reinforced by Perfectly Bonded

Impenetrable Short Fiber,” Engineering Fracture Me-

chanics, Vol. 71, No. 18, 2004, pp. 2621-2633.

doi:10.1016/j.engfracmech.2004.02.007

[33] M. B. Bush, “The interaction between a Crack and a Par-

ticle Cluster, ” International Journal of Fracture, Vol. 88,

No. 3, 1997, pp. 215-232.

doi:10.1023/A:1007469631883

[34] K. Kim and L. J. Sudak, “Interaction between a Radial

Matrix Crack and a Three-Phase Circular Inclusion with

Imperfect Interface in Plane Elasticity,” International

Journal of Fracture, Vol. 131, No. 2, 2005, pp. 155-172.

doi:10.1007/s10704-004-3636-6

[35] P. G. Park and L. J. Sudak, “Stress Intensity Factor for an

Interphase Crack Interacting with Two Imperfect Inter-

faces,” Mathematics and Mechanics of Solids, Vol. 15,

No. 3, 2010, pp. 353-367.

doi:10.1177/1081286508101512

[36] G. D. Seidel and D. C. Lagoudas, “Micromechanical

Analysis of the Effective Elastic Properties of Carbon

Copyright © 2013 SciRes. WJM