T. EL-SAYED TAWFIK

Copyright © 2013 SciRes. WJM

5

nd noises or random fluctuations. Two control

[1] A. AbdessamGlobal Traj

quency a

torques (3.1) which stabilize asymptotically the rotational

motion of an axi-symmetric rigid body are obtained in

terms of the orientation parameters without angular ve-

locity measurements. Global asymptotic stability is shown

by applying LaSalle invariance principal.

REFERENCES

eud and A. Tayebi, “ectory

Tracking Control of VTOL-UAVs without Linear Veloc-

ity Measurements,” Automatica, Vol. 46, No. 6, 2010, pp.

1053-1059. doi:10.1016/j.automatica.2010.03.010

[2] S. Ding, S. Li and Q. Li, “Adaptive Set Stabilization of

the Attitude of a Rigid Spacecraft without Angular Ve-

locity Measurements,” Journal of Systems Science and

Complexity, Vol. 24, No. 1, 2011, pp. 105-119.

doi:10.1007/s11424-011-8214-1

[3] A. El-Gohary and T. S. Tawfik, “Attitude Stabilization

Using Modified Rodrigues Parameters without Angular

Velocity Measurements,” World Journal of Mechanics,

Vol. 1, No. 2, 2011, pp. 57-63.

doi:10.4236/wjm.2011.12008

[4] P. Tsiotras and J. M. Longuski, “A New Parameterization

the

on the Attitude Kinematics,” Journal of the Astronautical

Sciences, Vol. 43, No. 3, 1995, pp. 243-262.

[5] F. Boyer and M. Alamir, “Further Results on Con-

trollability of a Two-Wheeled Satellite,” Journal of Guid-

ance, Control, and Dynamics, Vol. 30, No. 2, 2007, pp.

611-619. doi:10.2514/1.21505

[6] N. M. Horri and S. Hodgart, “Attitude Stabilization of an

under Actuated Satellite Using Two Wheels,” IEEE Aero-

space Conference, Vol. 6, 2003, pp. 2629-2635.

[7] C. Aguilar-Ibaez, M. S. Suarez-Castanon and F. Guzman-

Aguilar, “Stabilization of the Angular Velocity of a Rigid

Body System Using Two Torques: Energy Matching

Condition,” American Control Conference, Seattle, 11-13

June 2008, pp. 4845-4849.

[8] H. Shen and P. Tsiotras, “Time-Optimal Control of Axi-

symmetric Rigid Spacecraft Using Two Controls,” Jour-

nal of Guidance, Control, and Dynamics, Vol. 22, No. 5,

1999, pp. 682-694. doi:10.2514/2.4436

[9] K. Sungpil and K. Youda, “Spin-Axis Stabilization of a

Rigid Spacecraft Using Two Reaction Wheels,” Journal

of Guidance, Control, and Dynamics, Vol. 24, No. 5, 2001,

pp. 1046-1049. doi:10.2514/2.4818

[10] R. Tammepõld, P. Fiorini and M. Kruusmaa, “Attitude

Control of Small Hopping Robots for Planetary Explora-

tion: A Feasibility Study,” 11th Symposium on Advanced

Space Technologies in Robotics and Automation (ASTRA

2011) ESA/ESTEC, Noordwijk, April 2011, pp. 12-14.

[11] P. Tsiotras, “Optimal Regulation and Passivity Results for

Axisymmetric Rigid Bodies Using Two Controls,” Jour-

nal of Guidance, Control, and Dynamics, Vol. 20, No. 3,

1997, pp. 457-463. doi:10.2514/2.4097

[12] H. Khalil, “Nonlinear Systems,” MacMillan, Princeton,

1992.