PV-Grid Tie System Energizing Water Pump

Copyright © 2013 SciRes. SGRE

418

Amsterdam, 1986.

[8] E. V. Meidanis, G. A. Vokas and J. K. Kaldellis, “Theo-

retical Simulation and Experimental Analysis of a PV-

Based Water Pumping System,” Lab of Soft Energy Ap-

plications & Environmental Protection, TEI of Piraeus.

powerelectronics.teipir.gr/Papers/MEDPOWER08_170.pdf

[9] J. Appelbaum and J. Bany, “Performance Analysis of DC

Motor Photovoltaic Converter System,” Solar Energy,

Vol. 22, No. 5, 1979, pp. 439-445.

doi:10.1016/0038-092X(79)90173-7

[10] M. Abu-Aligh, “Design of Photovoltaic Water Pumping

System and Compare It with Diesel Powered Pump,”

JJMIE, Vol. 5, No. 3, 2011, pp. 273-280.

[11] The Mathworks, Inc., “Matlab and Simulink,” Version

R2010a. http://www.mathworks.com

[12] S. B. Kjaer, J. K. Pedersen and F. Blaabjerg, “A Review

of Single-Phase Grid-Connected Inverters for Photovol-

taic Modules,” IEEE Transactions on Industry Applica-

tions, Vol. 41, No. 5, 2005, pp. 1292-1306.

doi:10.1109/TIA.2005.853371

[13] S. J. Chapman, “Electric Machinery Fundamentals,” Mc-

Graw-Hill, New York, 2003.

[14] G. McPherson and R. D. Laramore, “An Introduction to

Electric Machines and Transformers,” Wiley, New York,

1990.

[15] A. K. Daud and M. M. Marwan, “Solar Powered Induc-

tion-Motor Water Pump Operating on a Desert Well,

Simulation & Field Tests,” Renewable Energy Journal,

Vol. 30, No. 5, 2005, pp. 701-714.

doi:10.1016/j.renene.2004.02.016

[16] M. Benghanem and A. H. Arab, “Photovoltaic Water

Pumping Systems for Algeria,” Desalination, Vol. 209,

No. 1-3, 2007, pp. 50-57.

[17] S. Khader and A. K. Daud, “Photovoltaic-Grid Integrated

System,” 2012 First International Conference on Renew-

able Energies and Vehicular Technology, Hammamet,

26-28 March 2012, pp. 60-65.

doi:10.1109/REVET.2012.6195249

Nomenclature

A,B diode idealistic factors

Eg band gap energy of the semiconductor

fn rated supply voltage frequency

g gravity acceleration (9.8 m/s2)

G solar irradiation

Gr reference solar irradiation

h reservoir elevation (m)

H total head (m)

HA total installation head (m)

HS static head (m)

HL network hydraulic losses (m)

water density (1000 kg/m3)

ηp pump efficiency (%)

Id diode saturation current

IMPP PV module current at maximum power

Io cell current

Iph cell photo current

Ipv Photovoltaic current

Isc short circuit current

Ior,It constants given at standard conditions

IL1 motor line current

K Boltzman constant

n rotor speed in rpm

ns motor synchronous speed in rpm

Np number of parallel connected cells

Npm number of parallel connected PV modules

Ns number of series connected cells

Nsm number of series connected PV modules

p number of motor poles

PG grid power

Pconst constant losses power

PL load consumed power

Pem electromagnetic power

Pmech net mechanical power

RLoad load resistance

Rp PV intersinc shunt resistance

Rs PV intersinc series resistance

R1 stator resistance of induction motor

R’2 rotor resistance motor referred to stator

R’th Thevinen resistance referred to stator

Rinp total input stator resistance

Q electric charge (Coulomb)

Q water flow-rate (m3/hr)

Ppv Photovoltaic generated power

PV Photovoltaic

Pinp motor input power

Tc cell temperature in Kelvin

Tem electromagnetic torque (N·m)

Tm motor net mechanical torque (Nm)

Tr reference temperature in Kelvin

VFD Variable Frequency Drive

VMPP PV module voltage at maximum power

VO cell output voltage

VOC PV module open circuit voltage

Vph terminal phase voltage

Vpv array photovoltaic voltage

Vth Thevinen voltage

Xm magnetic reactance

X1 stator reactance of induction mptor

X’2 rotor reactance of induction motor referred to stator

X’th Thevinen reactance referred to stator

Xinp total input stator reactance

Zth Thevinen impedance

Zinp total input stator impedance

n normalized insulation

motor phase shift angle

rotor speed in rad/s

friction coefficient