S. Z. M. TUMARI ET AL. 19

(c)

(d)

Figure 5. (a) Beta (b) Alpha (c) Theta (d) Delta: Frequency

Domain of EEG Signal for First Subject at Channel Fz.

Table 3. Description on parameter extraction of eeg signal

for study phase: first subjec t.

Beta

(D5) Alpha

(D6) Theta

(D7) Delta

(A7)

Mean 0.0289 0.3619 1.091 - 2.559

Standard Deviation 368.7 509.5 747.4 1183

Max Value 1703 2372 2054 2888

Median 146.3 320.5 438.3 856.9

PSD (µV) 5.82 0.101 0.013 0.011

Frequency (Hz) 9.77 5.86 1.95 0.98

for extracting the EEG signals into different frequency

bands.

6. Acknowledgements

Our appreciation also goes to the Malaysia Ministry of

Education, Johor Education Department, Zamalah Schol-

arship and Universiti Teknologi Malaysia for permission,

facilities and funding this project under QJ130000.

2623.09J28.

REFERENCES

[1] G. Neale and K. Tehan, “Age and Redintegration in Im-

mediate Memory and Their Relationship to Task Diffi-

culty,” Memory and Cognition, Vol. 8, No. 35, 2007, pp.

1940-1953. doi:10.3758/BF03192927

[2] N. Unsworth and R. W. Engle, “Simple and Complex

Memory Spans and Their Relation to Fluid Abilities:

Evidence from List-Length Effects,” Journal of Memory

and Language, Vol. 54, No. 1, 2006, pp. 68-80.

doi:10.1016/j.jml.2005.06.003

[3] S. Lewandowsky, S. M. Geiger and D. B. Morrell,

“Turning Simple Span into Complex Span: Time for De-

cay or Interference from Distractors?” in Simple and

Complex Span, Australia , 2007, pp. 1-71.

[4] H. Adeli, Z. Zhou and N. Dadmehr, “Analysis of EEG

Records in an Epileptic Patient using Wavelet Trans-

form.,” Journal of Neuroscience Methods, Vol. 123, No.

1, 2003, pp. 69-87. doi:10.1016/S0165-0270(02)00340-0

[5] A. Roth, D. Roesch-Ely, S. Bender, M. Weisbrod and S.

Kaiser, “Increased Event-Related Potential Latency and

Amplitude Variability in Schizophrenia Detected

Through Wavelet-based Single Trial Analysis,” Journal

of the International Organization of Psychophysiology,

Vol. 66, No. 3, 2007, pp. 244-254.

doi:10.1016/j.ijpsycho.2007.08.005

[6] J. M. Misiti, M. Misiti, Y. Oppenhum and G. Poggi,

“Wavelet Toolbox: For Use With MATLAB,” 1st ed, The

Mathworks, Incorporation, 1996, pp. 1-626.

[7] A. I. Megahed, A. Mone m Moussa, H. B. Elrefaie and Y.

M. Marghany, “Selection of a Suitable Mother Wavelet

for Analyzing Power System Fault Transients,” 2008

IEEE Power and Energy Society General Meeting - Con-

version and Delivery of Electrical Energy in the 21st

Century, 2008, pp. 1-7.

[8] C. Bowman and A. C. Newell, “A Wavelet based Algo-

rithm for Pattern Analysis,” Journal of Physica D, vol.

119, pp. 250-282, 1998.

doi:10.1016/S0167-2789(98)00039-6

[9] S. Lee, W.-S. Kang and K. Cho, “A Method of Mother

Wavelet Function Learning for DWT -based Analysis us-

ing EEG Signals 2,” IEEE, 2011, pp. 2-5.

[10] H. Ocak, “Automatic Detection of Epileptic Seizures in

EEG using Discrete Wavelet Transform and Approximate

Entropy,” Expert Systems with Applications, Vol. 36, No.

2, 2009, pp. 2027-2036. doi:10.1016/j.eswa.2007.12.065

[11] D. Sripathi, “CHAPTER 2: The Discrete Wavelet Trans-

form,” 2003, pp. 6-15.

[12] M. O. Oliveira and A. S. Bretas, “Application of Discrete

Wavelet Transform for Differential Protection of Power

Transformers,” in Discrete Wavelet Transforms - Bio-

medical Applications, H. Oikkonen, Ed. Shanghai: In-

Tech, 2008, pp. 349-367.

[13] R. Polikar, “The Story of Wavelets 1,” in Physics and

Modern Topics in Mechanical and Electrical Engineering,

USA: Press, World Scientific and Eng, Society, 1999, pp.

192-197.

[14] A. C. Merzagora, S. Bunce, M. Izzetoglu and B. Onaral,

“Wavelet Analysis for EEG Feature Extraction in Decep-

tion Detection.,” IEEE Engineering in Medicine and Bi-

ology Society Conference, 2006, Vol. 1, pp. 2434-2437.

[15] M. Antonini, “Mean Square Error Approximation for

Wavelet-Based Semiregular Mesh Compression,” Vol. 12,

No. 4, pp. 649-657, 2006.

Copyright © 2013 SciRes. ENG