S. MATSUO ET AL.
Copyright © 2013 SciRes. OJFD
47
results obtained are summarized as follows:
1) Locally occurred non-equilibrium condensation on
the transonic bump model weakened the shock strength.
2) Compared with the case of occurrence of non-equi-
librium condensation across the passage of the nozzle,
locally occurred non-equilibrium condensation could re-
duce the total pressure loss downstream of the shock
wave.
3) The development of boundary layer was dependent
on how the non-equilibrium condensation occurs.
REFERENCES
[1] L. Bahi, J. M. Ross and T. Nagamatsu, “Passive Shock
Wave/Boundary Layer Control for Transonic Airfoil Drag
Reduction,” AIAA 21st Aerospace Sciences Meeting, Ne-
vada, 10-13 January 1983, AIAA-83-0137, 12 pp.
[2] S. Raghunathan, “Passive Control of Shock-Boundary
Layer Interaction,” Progress in Aerospace Sciences, Vol.
25, No. 3, 1998, pp. 271-296.
doi:10.1016/0376-0421(88)90002-4
[3] N. Saida and Y. Tomizuka, “Passive Control of Oblique
Shock/Boundary Layer Interaction,” Journal of the Japan
Society for Aeronautical and Space Sciences, Vol. 50, No.
581, 2002, pp. 223-230. doi:10.2322/jjsass.50.223
[4] S. R. Raghunathan, M. O’Rourke, J. K. Watterson, R. K.
Cooper and E. Benard, “Passive Vortex Control Jets for
Shock Boundary Layer Interactions,” AIAA 17th Applies
Aerodynamics Conference, Virginia, 28 June-2 July 1999,
AIAA-99-3196.
[5] M. J. O’Rourke, M. Healy and S. R. Raghunathan, “Com-
putational Experiment Investigating Passive Vortex Con-
trol Jets for Shock Boundary Layer Interactions,” 31st
AIAA Fluid Dynamics Conference & Exhibit, California,
11-14 June 2001, AIAA-2001-3028.
[6] P. P. Wegener and L. M. Mach, “Condensation in Super-
sonic Hypersonic Wind Tunnels,” Advances in Applied
Mechanics, Vol. 5, 1958, pp. 307-447.
doi:10.1016/S0065-2156(08)70022-X
[7] K. Matsuo, S. Kawagoe and K. Sonoda, “Studies of Con-
densation Shock Waves (Part 1, Mechanism of their
Formulation),” Bulletin of JSME, Vol. 28, No. 241, 1985,
pp. 1416-1422. doi:10.1299/jsme1958.28.1416
[8] J. P. Sislian, “Condensation of Water Vapour with or
without a Carrier Gas in a Shock Tube,” UTIAS Report
No. 201, Institute for Aerospace Studies, University of
Toronto, Toronto, 1975.
[9] T. Setoguchi, S. Matsuo and S. Yu, “Effect of Nonequi-
librium Homogeneous Condensation on Flow Fields in a
Supersonic Nozzle,” Journal of Thermal Science, Vol. 6,
No. 2, 1997, pp. 90-96. doi:10.1007/s11630-997-0022-5
[10] S. Matsuo, T. Setoguchi and S. Yu, “Effect of Nonequi-
librium Condensation of Moist Air on the Boundary
Layer in a Supersonic Nozzle,” Journal of Thermal Sci-
ence, Vol. 6, No. 4, 1997, pp. 260-272.
doi:10.1007/s11630-997-0005-6
[11] M. Tanaka, S. Matsuo and T. Setoguchi, “Passive Control
of Transonic Flow Fields with Shock Wave Using Non-
Equilibrium Condensation and Porous Wall,” Journal of
Thermal Science, Vol. 2, No. 12, 2003, pp. 128-131.
doi:10.1007/s11630-003-0053-5
[12] R. B. Bird, W. E. Stewart and E. N. Lightfoot, “Transport
Phenomena,” Wiley, New York, 1960.
[13] J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, “Molecu-
lar Theory of Gases and Liquids,” Wiley, New York,
1954. doi:10.1016/0016-0032(55)91080-2
[14] M. Furukawa, T. Nakano and M. Inoue, “Unsteady Na-
vier-Stokes Simulation of Transonic Cascade Flow Using
an Unfactored Implicit Upwind Relaxation Scheme with
Inner Iterations,” Journal of Turbomachinery, Vol. 114,
No. 3, 1992, pp. 599-606. doi:10.1115/1.2929184
[15] H. C. Yee, “A Class of High-Resolution Explicit and
Implicit Shock Capturing Methods,” NASA, Washington
DC, 1989.
[16] D. C. Wilcox, “Formulation of the k-Turbulence Model
Revisited,” AIAA Journal, Vol. 46, No. 11, 2008, pp.
2823-2838. doi:10.2514/1.36541