Journal of Modern Physics, 2013, 4, 7784 http://dx.doi.org/10.4236/jmp.2013.47A1009 Published Online July 2013 (http://www.scirp.org/journal/jmp) The LightDark Dual Universe for the Big Bang and Dark Energy DingYu Chung1, Volodymyr Krasnoholovets2 1P.O. Box 180661, Utica, USA 2Institute of Physics, National Academy of Sciences, Kyiv, Ukraine Email: dy_chung@yahoo.com, krasnoh@iop.kiev.ua Received April 3, 2013; revised May 7, 2013; accepted June 9, 2013 Copyright © 2013 DingYu Chung, Volodymyr Krasnoholovets. This is an open access article distributed under the Creative Com mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT In the proposed lightdark dual universe, the light universe is the observable universe with light and kinetic energy that fueled the Big Bang, and the dark universe without light and kinetic energy has been observed as dark energy since about 9 billion years after the Big Bang. The lightdark dual universe started from the zeroenergy universe through the fourstage cyclic transformation. Emerging from the zeroenergy universe, the fourstage transformation consists of the 11D (dimensional) positivenegative energy dual membrane universe, the 10D positivenegative energy dual string universe, the 10D positivenegative energy dual particle universe, and the 4D (light)variable D (dark) positivenegative energy dual particle asymmetrical universe. The transformation can then be reversed back to the zeroenergy universe through the reverse fourstage transformation. The light universe is an observable fourdimensional universe started with the inflation and the Big Bang, and the dark universe is a variable dimensional universe from 10D to 4D. The dark universe could be observed as dark energy only when the dark universe turned into a fourdimensional universe. The fourstage transformation explains the four force fields in our universe. The theoretical calculated percentages of dark energy, dark matter, and baryonic matter are 72.8. 22.7, and 4.53, respectively, in nearly complete agreement with ob served 72.8, 22.7, and 4.56, respectively. According to the calculation, dark energy started in 4.47 billion years ago in agreement with the observed 4.71 ± 0.98 billion years ago. The zeroenergy cyclic universe is based on the spaceobject structures. Keywords: Cosmology; Light Universe; Dark Universe; Dual Universe; Big Bang; Inflation; ZeroEnergy; Cyclic Universe; Dark Energy; Dark Matter; Baryonic Matter; Force Fields 1. Introduction The Big Bang has kinetic energy, while dark energy does not have kinetic energy. It is possible that they come from two different universes. In the proposed dual uni verse, the Big Bang comes from the observable “light universe” with light and kinetic energy, and dark energy comes from the “dark universe” without light and kinetic energy. Dark energy did not occur at the time of the Big Bang. Dark energy emerged after about 9 billion years following the Big Bang. In other words, the dark uni verse was not observable from the light universe for 9 billion years. It is proposed that for about 9 billion years the dark universe as the higher spacetime dimensional universe was not observable by the light universe as the fourdimensional universe, because the observation vio lated causality [1] as explained later. When the variable dimensional dark universe from 10D (dimensional) to 4D turned into fourdimensional spacetime after about 9 billion years following the Big Bang, the dark universe became observable as dark energy. Therefore, the creation of our universe started with the formation and the separation of the fourdimensional light universe with light and kinetic energy and the vari able dimensional dark universe from 10D to 4D without light and kinetic energy. This complicated lightdark dual universe, obviously, could not emerge by itself without simple predecessor universes. The ultimate predecessor universe of the lightdark dual universe before the crea tion is the zeroenergy universe without form and energy. In the zeroenergy universe hypothesis, the total amount of energy in the universe is exactly zero. The conven tional zeroenergy universe hypothesis is based on quan tum fluctuation and the exact cancellation of positive C opyright © 2013 SciRes. JMP
D.Y. CHUNG, V. KRASNOHOLOVETS 78 energy matter by negativeenergy gravity through pseudo tensor [2] or the inflation [3] before the Big Bang. Quan tum fluctuation provides a natural explanation for how that energy may have come out of nothing in the universe. Throughout the multiverse, from the zeroenergy uni verse, symmetrical positiveenergy and negativeenergy universes spontaneously form and quickly annihilate each other. A negative universe becomes a negative en ergy gravitational field, and a positive energy universe becomes positiveenergy matter as described by Stephen Hawking in A Brief History of Time [4]: “The positive energy of the matter is exactly balanced by the negative energy of the gravitational field. So the universe can start off with zero energy and still create matter.” In the proposed zeroenergy cyclic universe, the posi tivenegative energy dual universe with the zerosum energy emerges from zeroenergy, and the universe un dergoes a cyclic transformation. The negativeenergy uni verse is not in the form of negativeenergy gravity. Sev eral cyclic universe models have been proposed [5]. For our universe, the cyclic transformation is between the 11D universe and the 4D universe. Emerging from the zeroenergy universe, the cyclic transformation from the 11D universe to the 4D universe involves the fourstage transformation consisting of the 11D positivenegative energy dual membrane universe, the 10D positivenega tive energy dual string universe, the 10D positivenega tive energy dual particle universe, and the 4D (light) variable D (dark) positivenegative energy dual particle asymmetrical universe as Figure 1. As explained later, each stage provides the origin of a force field, so the fourstage transformation provides the origins for the four force fields, the strong, the gravita tional, the electromagnetic, and the weak force fields, chronologically, for our universe. Our current universe is the 4D (light)variable D (dark) positivenegative energy dual particle asymmetrical universe. As explained later, all universes with the spacetime dimension number higher than 4 have nonzero vacuum energies, so before the creation of our universe, the prede cessor positivenegative energy dual universes had non Figure 1. The zero energy cyclic universe. zero vacuum energies proportional to the spacetime di mension numbers, and they had no light. The transition from the nonzero vacuum energy to the zero vacuum energy in the light universe constituted the inflation be fore the Big Bang, and the introduction of kinetic energy in the light universe led to the Big Bang. Baryonic matter and dark matter are in the light uni verse, and dark energy comes from the dark universe and the bulk space between the light and the dark universes. As shown later, the theoretical calculated percentages of dark energy, dark matter, and baryonic matter are in nearly complete agreement with observed values. The theoretical calculation of the years to start dark energy is also in agreement with the observed value. 2. The SpaceObject Structures The zeroenergy cyclic universe is based on the space object structures [1]. Different universes are the different expressions of the spaceobject structures. The space structure [6] consists of attachment space (denoted as 1) and detachment space (denoted as 0). At tachment space attaches to object permanently with zero speed. Detachment space detaches from the object at the speed of light. Attachment space relates to rest mass, while detachment space relates to kinetic energy. Differ ent stages of our universe have different space struc tures.The transformation between mass (massive particle) in attachment space and kinetic energy (massless particle) in detachment space is through the scalar Goldstone boson. The object structure consists of 11D membrane (311), 10D string (210), particle (14 to 10), and empty object (04 to 11). Different universes and different stages of a universe can have different expressions of the object structure. The transformation among the objects is through the di mensional oscillation [1] that involves the oscillation between high dimensional spacetime and low dimen sional spacetime based on the varying speed of light. Varying speed of light has been proposed to explain the horizon problem of cosmology [7,8]. J. D. Barrow [9] proposes that the time dependent speed of light varies as some power of the expansion scale factor a in such way that 0 n ct ca 0c , (1) where 0 and n are constants. The increase of speed of light is continuous. In this paper, varying dimension number (VDN) re lates to quantized varying speed of light (QVSL), where the speed of light is invariant in a constant spacetime dimension number, and the speed of light varies with varying spacetime dimension number from 4 to 11. D4 D,cc (2) Copyright © 2013 SciRes. JMP
D.Y. CHUNG, V. KRASNOHOLOVETS 79 where c is the observed speed of light in the 4D space time, D is the quantized varying speed of light in spacetime dimension number, D, from 4 to 11, and c is the fine structure constant for electromagnetism. Each dimensional spacetime has a specific speed of light. (Since from the beginning of our observable universe, the spacetime dimension has always been four, there is no observable varying speed of light in our observable uni verse.) The speed of light increases with the increasing spacetime dimension number D. In special relativity, modified by Equation (2) is expressed as 2 0 EMc 2D 4 2 c 0 EM (3a) 2d 42 0 c . (3b) Equation (3a) means that a particle in the D dimen sional spacetime can have the superluminal speed D4 c , which is higher than the observed speed of light c, and has the rest mass0 . Equation (3b) means that the same particle in the 4D spacetime with the observed speed of light acquires 2d4 M 0 as the rest mass, where d = D. D from 4 to 11 in Equation (3a) is the spacetime dimension number defining the varying speed of light. In Equation (3b), d from 4 to 11 is “mass dimen sion number” defining varying mass. For example, for D = 11, Equation (3a) shows a superluminal particle in elevendimensional spacetime, while Equation (3b) shows that the speed of light of the same particle is the observed speed of light with the 4D spacetime, and the mass di mension is eleven. In other words, 11D spacetime can transform into 4D spacetime with 11d mass dimension. 11D4d in Equation (3a) becomes 4D11d in Equation (3b) through QVSL. QVSL in terms of varying spacetime dimension number, D, brings about varying mass in terms of varying mass dimension number, d. Mass dimension is also proposed in the Wesson’s SpaceTimeMatter (STM) theory as the matter dimension to account for the extra space dimensions [10]. The QVSL transformation transforms both spacetime dimension number and mass dimension number. In the QVSL transformation, the decrease in the speed of light leads to the decrease in spacetime dimension number and the increase of mass in terms of increasing mass di mension number from 4 to 11, 2 DD , n n cc 2 0,D ,d, n nn (4a) 0,D,d MM D,dD, dnn QVSL (4b) 111110 110 30 212 (4c) where D is the spacetime dimension number from 4 to 11 and d is the mass dimension number from 4 to 11. For example, in the QVSL transformation, a particle with 11D4d is transformed to a particle with 4D11d. In terms of rest mass, 11D spacetime has 4d with the lowest rest mass, and 4D spacetime has 11d with the highest rest mass. Rest mass decreases with increasing spacetime di mension number. The decrease in rest mass means the increase in vacuum energy, so vacuum energy increases with increasing spacetime dimension number. The vac uum energy of 4D particle is zero, while 11D membrane has the Planck vacuum energy. On the other hands, the vacuum space dimension number of 11D membrane is zero, while the vacuum space dimension number of 4D particle is 7. Since the speed of light for >4D particle is greater than the speed of light for 4D particle, the observation of >4D superluminal particles by 4D particles violates casualty. Thus, >4D particles are hidden particles with respect to 4D particles. Particles with different spacetime dimen sions are transparent and oblivious to one another, and separate from one another if possible. 3. Cosmology The transformation from the 11D universe to the 4D universe involves the fourstage transformation consisting of the 11D positivenegative energy dual membrane uni verse, the 10D positivenegative energy dual string uni verse, the 10D positivenegative energy dual particle uni verse, and the 4Dvariable D positivenegative energy dual particle asymmetrical universe which provide the ori gins for the strong, the gravitational, the electromagnetic, and the weak force, respectively. The multiverse starts with the zero energy universe, which produces the positive energy 11D membrane uni verse and the negative energy 11D membrane universe denoted as 311 3 −11, as proposed by Mongan [11]. The only force among the membranes is the prestrong force, s, as the predecessor of the strong force. It is from the quantized vibration of the membranes to generate the re versible process of the absorptionemission of the parti cles among the membranes. The prestrong force medi ates the reversible absorptionemission in the flat space. The prestrong force is the same for all membranes, so it is not defined by positive or negative sign. In certain regions of the 11D membrane universe, the local expansion takes place by the transformation from 11Dmembrane into 10Dstring. The expansion is the re sult of the vacuum energy difference between 11D mem brane and 10D string. With the emergence of empty ob ject (011), 11D membrane transforms into 10D string warped with virtue particle as pregravity. ssg (5) where 311 is the 11D membrane, s is the prestrong force, Copyright © 2013 SciRes. JMP
D.Y. CHUNG, V. KRASNOHOLOVETS 80 011 is the 11D empty object, 210 is 10D string, 11 is one dimensional virtue particle as g, pregravity. Empty ob ject corresponds to the antiDe Sitter bulk space in the RandallSundrum model [12] for gravity. In the same way, the surrounding object can extend into empty object by the decomposition of space dimension as described by Bounias and Krasnoholovets [13], equivalent to the Ran dallSundrum model. The g is in the bulk space, which is the warped space (transverse radial space) around 210. As in the AdS/CFT duality [14] for gravity, the prestrong force has 10D dimension, one dimension lower than the 11D membrane, and is the conformal force defined on the conformal boundary of the bulk space. Through symmetry, antistrings form 10D antibranes with antipregravity as 2−10 g−, where g− is antipregrav ity. 11 1110 30 2110 12 ssg 10 2 nn gs (6) Pregravity can be attractive or repulsive to antipre gravity. If it is attractive, the universe remains homoge neous. If it is repulsive, n units of (210)n and n units of (2−10)n are separated from each other. 10 2sg (7) The dual 10D string universe consists of two parallel universes with opposite energies: 10D strings with posi tive energy and 10D antistrings with negative energy. The two universes are separated by the bulk space, con sisting of pregravity and antipregravity. There are four equal regions: positive energy string universe, pregravity bulk space, antipregravity bulk space, and negative en ergy antistring universe. Such dual universe separated by bulk space appears in the ekpyrotic universe model [15]. Through the dimensional oscillation, the 10D dual universe returns to the 11D dual universe that coalesces to undergo annihilation and to return to the zero energy universe. The 10D positive and negative universe can also coalesce to undergo annihilation and to return to the zero energy universe. The first path of such coalescence is the annihilation, resulting in disappearance of the dual universe and the return to the zeroenergy universe. The second path allows the continuation of the dual universe in another form without annihilation from the mixing of positive energy and negative energy. Such dual universe is possible by the emergence of the precharge force, the predecessor of electromagnetism with positive and negative charges that provide the new distinction between string and antistring. The mixing of string and antistring becomes the mixing of positive charge string and negative charge antistring instead of positive energy string and negative energy antistring, resulting in the preservation of the dual universe with the positive energy and the negative energy. The process is the charge trans formation as F igure 2. Figure 2. The charge transformation. During the coalescence for the second path, the posi tive energy string and the negative energy antistring in tersect at the middle as Figure 2. The combination of one half of the positive energy and one half of the negative energy antistring form a new string. As a result, there are two new strings with the top half and with the bottom half of Figure 2. The top half is transformed into a new positive energy string, while the bottom half is trans formed into a new negative energy string. The way to achieve such transformations is through the emergence of charges in the charge transformation. In the top half of the figure above, a positive charge (e+) emerges in the positive energy string, and a negative charge (e−) emer ges in the negative energy antistring to transform the ne gative energy antistring into the positive energy anti string, resulting in the positive energy antistring with negative charge. The new string from the top half in cludes the positive energy positive charge string and po sitive energy negative charge antistring. Simultaneously, in the bottom half of the figure above, a negative charge emerges in the negative energy anti string, and a positive charge emerges in the positive en ergy string to transform the positive energy string into the negative energy string, resulting in the negative en ergy string with positive charge. The new string from the bottom half includes the negative energy negative charge antistring and the negative energy positive charge string. In the charge transformation, all transformations and the additions of charges are symmetrical. At that time, the space (detachment space) for radia tion has not appeared in the universe, so the stringanti string annihilation does not result in radiation. The string antistring annihilation results in the replacement of the stringantistring as the 10D stringantistring, (210 2−10) by the 10D particleantiparticle (110 1 −10). The 10D parti clesantiparticles have the multiple dimensional Kaluza Klein structure with variable space dimension number without the requirement for a fixed spacetime dimension number as 10 for stringantistring. After the mixing, the dual 10D particleantiparticle universe separated by pre gravity and antipregravity appears as below. 10 1010 10 11 11, nn see sggsee s (8) where s and e are the prestrong force and the pre charged force in the flat space, g is pregravity in the bulk Copyright © 2013 SciRes. JMP
D.Y. CHUNG, V. KRASNOHOLOVETS 81 space, and 110 1−10 is the particleantiparticle. The dual 10D particle universe consists of two parallel particleantiparticle universes with opposite energies and the bulk space separating the two universes. There are four equal regions: the positive energy particleantiparti cle universe, the pregravity bulk space, the negative en ergy particleantiparticle universe, and the antipregrav ity bulk space. The formation of our current universe follows imme diately after the formation of the charged preuniverse through the asymmetrical dimensional oscillations and the asymmetrical addition of detachment space, leading to the asymmetrical dual universe. The asymmetrical di mensional oscillation involved the immediate transfor mation of the positiveenergy universe from 10D to 4D and the slow stepwise reversible transformation of the negativeenergy universe between 10D and 4D. The re sult was the asymmetrical dual universe consisting of the positiveenergy 4D light universe with kinetic energy and light and the negativeenergy oscillating 10D4D dark universe without kinetic energy and light. The light uni verse contains both attachment space and detachment space. The asymmetrical dual universe is manifested as the asymmetry in the weak interaction in our observable universe as follows. 44 4to10 LightUniverse and _ 11 DarkUniverse and sewew s 4to 10 bulk space bulkspace 11 n n g sewe w s nsformation 1 D,d1 10D4d 9D5d 9D4d8D5d4D5d 4D4d hidden dark universedark energy d,Fd,Bd,B ,MM (9) where s, g, e, and w are the strong force, gravity, elec tromagnetism, and weak interaction, respectively for the observable universe, and where 14 1−4 and 14 to 10 1−4 to −10 are 4D particleantiparticle for the light universe and variable D particleantiparticle for the dark universe, re spectively. The dark universe involves the stepwise twostep trans formation: the QVSL transformation and the varying supersymmetry transformation from 10D4d to 4D4d (The particles in the 10D dual particle universe are 10D4d). The QVSL transformation involves the trans formation of spacetime dimension, D. The varying su persymmetry transformation involves the transformation of the mass dimension number, d, as follows. QVSL varying supersymme try stepwise twostep varying tra 1D,d D1,d 2D,d (10) The repetitive stepwise twostep transformation from 10D4d to 4D10d as follows: In this twostep transformation, the transformation from 10D4d to 9D5d involves the QVSL transformation as in Equation (4c). Calculated from Equation (4b), the mass of 9D5d is 1/ 2 ≈ 1372 times of the mass of 10D4d. The transformation of 9D5d to 9D4d involves the varying supersymmetry transformation. In the normal super symmetry transformation, the repeated application of the fermionboson transformation carries over a boson (or fermion) from one point to the same boson (or fermion) at another point at the same mass. In the “varying super symmetry transformation”, the repeated application of the fermionboson transformation carries over a boson from one point to the boson at another point at different mass dimension number in the same spacetime number. The repeated varying supersymmetry transformation car ries over a boson Bd into a fermion Fd and a fermion Fd to a boson Bd−1, which can be expressed as follows (11a) d1,Bd,Fd,F ,MM (11b) where Md, B and Md, F are the masses for a boson and a fermion, respectively, d is the mass dimension number, and αd,B or αd,F is the fine structure constant that is the ratio between the masses of a boson and its fermionic partner. Assuming ’s are the same, it can be expressed as 2 d,Bd 1,Bd 1 MM . (11c) The mass of 9D4d is 2 ≈ (1/137)2 times of the mass of 9D5d through the varying supersymmetry transformation. The transformation from a higher mass dimensional par ticle to the adjacent lower mass dimensional particle is the fractionalization of the higher dimensional particle to the many lower dimensional particles in such way that the number of lower dimensional particles becomes 2 2 d1 d137 d NN N (11d) The fractionalization also applies to D for 10D4d to 9D4d, so 2 D1 D NN (11e) Since the supersymmetry transformation involves trans lation, this stepwise varying supersymmetry transforma tion leads to a translational fractionalization, resulting in the cosmic expansion. Afterward, the QVSL transforma tion transforms 9D4d into 8D5d with a higher mass. The twostep transformation repeats until 4D4d, and then reverses stepwise back to 10D4d. In the light universe, the dimensional oscillation trans forms 10D to 4D immediately. It involves the twostep Copyright © 2013 SciRes. JMP
D.Y. CHUNG, V. KRASNOHOLOVETS 82 transformation: the QVSL transformation and the slicing by detachment space. The Big Bang occurred afterward. 10d ter 4D5d 46 slicing by detachmentspace 6 44 4,6 1 1 10d attachment space 01 1 4d core6 typesof4d units attachment forcefields i ij quick QVSLtransformation slicing with detachment space, 10D4d 4D darkmat 4D9d 4D8d 4D7d 4D6d aryonicmatter (4D4d)cosm thermal cosmicexpansiont ic radiation he Big Bang (12) This twostep transformation corresponds to the two step inflation. In the first step, the quick and immediate QVSL transformation transforms 10D4d from the 10D dual particle universe to 4D10d immediately. Calculated from Equation (4b), the mass of 4D10d is 1/ 12 ≈ 13712 times of the mass of 10D4d, resulting in the first step of the inflation as the rapid expansion of space from the high vacuum energy 10D4d to the zero vacuum energy 4D10d. The first step of the inflation does not involve kinetic energy. The second step introduces kinetic energy (de tachment space) in the slicing of particles for the reduc tion of the mass dimension number. Bounias and Kras noholovets [16] propose another explanation of the re duction of >4 D spacetime into 4D spacetime by slicing >4D spacetime into infinitely many 4D quantized units surrounding the 4D core particle. Such slicing of >4D spacetime is like slicing 3space D object into 2space D object in the way stated by Michel Bounias as follows: “You cannot put a pot into a sheet without changing the shape of the 2D sheet into a 3D dimensional packet. Only a 2D slice of the pot could be a part of sheet”. The slicing is by detachment space, as a part of the space structure, which consists of attachment space (de noted as 1) and detachment space (denoted as 0) as de scribed earlier. Attachment space for rest mass attaches to object permanently with zero speed. Detachment space for kinetic energy detaches from the object at the speed of light. The cosmic origin of detachment space is the cosmic radiation from the particleantiparticle annihila tion that initiates the transformation. The cosmic radia tion cannot permanently attach to a space. The slicing of dimensions is the slicing of mass di mensions. 4D10d particle is sliced into six particles: 4D9d, 4D8d, 4D7d, 4D6d, 4D5d, and 4D4d equally by mass. Baryonic matter is 4D4d, while dark matter con sists of the other five types of particles (4D9d, 4D8d, 4D7d, 4D6d, and 4D5d). The mass ratio of dark matter to baryonic matter is 5 to 1 in agreement with the observa tion [17] showing the universe consists of 22.7% dark matter, 4.56% baryonic matter, and 72.8% dark energy. Detachment space (0) involves in the slicing of mass dimensions. Attachment space is denoted as 1. For ex ample, the slicing of 4D10d particles into 4D4d particles is as follows: (13) The two products of the slicing are the 4dcore at tachment space and 6 types of 4d quantized units. The 4d core attachment space surrounded by 6 types of many (j) 4D4d quantized units corresponds to the core particle surrounded by 6 types of many small 4d particles, which constitute gauge force fields in “dimensional orbitals” [18]. The dimensional orbitals of baryonic matter provide the base for the periodic table of elementary particles to calculate accurately the masses of all 4D elementary par ticles, including quarks, leptons, and gauge bosons [18]. As shown in Reference [18], baryonic matter has elec tromagnetism (charge), while dark matter does not have electromagnetism. Without electromagnetism, dark mat ter cannot emit light, and is incompatible to baryonic matter, like the incompatibility between oil and water. After the creation of the lightdark dual universe, baryonic matter and dark matter started to separate from each other gradually. Millions years afterward, stars started to appear from baryonic matter. The increasing incompatibility be tween dark matter and baryonic matter leads to the in homogeneity like emulsion, resulting in the formation of stars, galaxies, clusters, and superclusters [19]. Dark matter has not been found by direct detection because of the incompatibility that does not allow the direct contact with dark matter by baryonic matter. The second step (the slicing) introduced detachment space as kinetic energy, and generated baryonic matter, dark matter, and cosmic radiation. The detailed descrip tion of the inflation is described in Reference [19]. The resulting kinetic energy started the thermal cosmic ex pansion as the Big Bang. The dark universe consists of two periods: the hidden dark universe and the dark energy universe. The hidden dark universe composes of the >4D particles. As men tioned before, particles with different spacetime dimen sions are transparent and oblivious to one another, and separate from one another if possible. Thus, >4D particles are hidden and separated particles with respect to 4D particles in the light universe (our observable universe). The hidden dark universe with D > 4 and the observable universe with D = 4 are the “parallel universes”. The 4D particles transformed from hidden >4D parti cles in the dark universe are observable dark energy for the light universe, resulting in the accelerated expanding universe. Since the dark universe does not have detach Copyright © 2013 SciRes. JMP
D.Y. CHUNG, V. KRASNOHOLOVETS Copyright © 2013 SciRes. JMP 83 ment space, the presence of dark energy is not different from the presence of the cosmological constant. In terms of quintessence, such dark energy can be considered the tracking quintessence [20] from the dark universe with the spacetime dimension number as the tracker. Dark energy emerged about 5 billion years ago (more precisely 4.71 ± 0.98 billion years ago at z = 0.46 ± 0.13) [21]). The four regions in the lightdark dual universe include the light universe, the gravity bulk space, the antigravity bulk space, and the dark universe. Through the symmetry among the space regions, all regions expand synchronic ally and equally (The symmetry is necessary for the ul timate reversibility of all cosmic processes). The light universe is the only region with the fourdimensional spacetime and with kinetic energy from the beginning, and all other three regions have variable dimensional spacetime without kinetic energy. The light universe occupies 25% of the total universe, while the other regions occupy 75% of the total universe, so the maximum dark energy from the dark universe, the gravity bulk space, and the antigravity bulk space is 75%. The present observable universe about reaches the maximum (75%) at the ob served 72.8% dark energy [17]. At 72.8% dark energy, the calculated values for baryonic matter and dark matter (with the 1:5 ratio) are 4.53% (=(100 – 72.8)/6) and 22.7% (=4.53 × 5), respectively, in excellent agreement with observed 4.56% and 22.7%, respectively [17]. Our universe is 13.7 billionyear old. Dark energy as the transformation from 5D to 4D started in about 4.71 ± 0.98 billion years ago [21]. The ratio of the time periods for the transformations from D → D − 1 is proportional to ln of the total number of particles (Equation (11e)) to be transformed from D → D – 1 for the exponential growth with time as Table 1. The period of the 5D → 4D is (0.333) (13.7)/((0.333) (72.8/75) + 0.667) = 4.61 billion years, and dark energy as the 5D → 4D started in (4.61) (72.8/75) = 4.47 billon years ago that is in agreement with the observed value of 4.71 ± 0.98 billion years ago [21]. After the maximally connected universe, 4D dark en ergy transforms back to >4D particles that are not ob servable. The removal of dark energy in the observable universe results in the stop of accelerated expansion and the start of contraction of the observable universe. The end of dark energy starts another “parallel universe pe riod”. Both hidden universe and observable universe con tract synchronically and equally. Eventually, the Big Crush and the twostep deflation occur in the light universe. In the first step of the deflation, the light universe loses all detachment space, kinetic energy, light, cosmic radiation, and force fields as dimensional orbitals, resulting in the return to 4D10d. In the second step of the deflation, the increase in vacuum energy allows the zero vacuum en ergy 4D10d to become the high vacuum energy 10D4d. Meanwhile, hidden >4D particlesantiparticles in the hid den universe transform into 10D4d particlesantiparticles. The dual universe can undergo another cycle of the lightdark dual universe. On the other hand, both uni verses can undergo the reverse charge transformation to become the 10D dual string universe, which in turn can return to the 11D dual membrane universe that in turn can return to the zeroenergy universe as Figure 3. 4. Summary The lightdark dual universe is based on the two physical structures: the space structure and the object structure. The space structure includes attachment space and de tachment space. Relating to rest mass, attachment space attaches to object permanently with zero speed. Relating to kinetic energy, detachment space detaches from the object at the speed of light. The object structure consists of 11D membrane (311), 10D string (210), particle (14 to 10), and empty object (04 to 11). The transformation among the objects is through the dimensional oscillation that in volves the oscillation between high dimensional space time with high vacuum energy and low dimensional space time with low vacuum energy. Our observable universe with 4D spacetime has zero vacuum energy. Different universes in different developmental stages are the dif ferent expressions of the two physical structures. In the proposed lightdark dual universe, the light uni verse is the observable universe with light and kinetic energy that fueled the Big Bang, and the dark universe without light and kinetic energy has been observed as dark energy since about 9 billion years after the Big Bang. The lightdark dual universe started from the zero energy universe through the fourstage cyclic transfor mation. Emerging from the zeroenergy universe, the fourstage transformation consists of the 11D (dimen Table 1. The percentages of the periods in the dark universe. 10D → 9D 9D → 8D 8D → 7D 7D → 6D 6D → 5D 5D → 4D Ratio of total numbers of particles 1 α−2 α−4 α−6 α−8 α−10 Ratio of ln (total number of particles) 0 −2α −4α −6α −8α −10α Ratio of periods 0 1 2 3 4 5 Percentages of periods 0 6.7 13.3 20 26.7 33.3 α is the fine structure constant for electromagnetism from Equation (11e).
D.Y. CHUNG, V. KRASNOHOLOVETS 84 +10D string universe +4D observable universe variable>4D hidden universe +4D universe with dark energy as 4D universe +4D observable universe variable>4D hidden un 10D antistring universe iverse +10D particle universe 10D particle universe + 11D membrane universe 11D antimembrane uni zeroenergy universe + = positive energy, verse = negative energy Figure 3. The cyclic cosmology. sional) positivenegative energy dual membrane universe, the 10D positivenegative energy dual string universe, the 10D positivenegative energy dual particle universe, and the 4D (light)variable D (dark) positivenegative energy dual particle asymmetrical universe. The trans formation can then be reversed back to the zeroenergy universe through the reverse fourstage transformation. The light universe is an observable fourdimensional universe started with the inflation and the Big Bang, and the dark universe is a variable dimensional universe from 10D to 4D. The dark universe could be observed as dark energy only when the dark universe turned into a four dimensional universe. The fourstage transformation ex plains the four force fields in our universe. The theoreti cal calculated percentages of dark energy, dark matter, and baryonic matter are 72.8. 22.7, and 4.53, respectively, in nearly complete agreement with observed 72.8, 22.7, and 4.56, respectively. According to the calculation, dark energy started in 4.47 billion years ago in agreement with the observed 4.71 ± 0.98 billion years ago. REFERENCES [1] D. Chung and V. Krasnoholovets, Scientific Inquiry, Vol. 8, 2007, pp. 165182. [2] M. S. Berman, International Journal of Theoretical Phys ics, 48, 2009, p. 3278. doi:10.1007/s1077300901258 [3] A. H. Guth, “The Inflationary Universe,” Perseus Books, Reading, 1997. [4] S. Hawking, “A Brief History of Time,” Bantam Dell Publishing Group, New York, 1988, p. 129. [5] P. J. Steinhardt and N. Turok, “Endless Universe,” Dou bleday, New York, 2007. [6] D. Chung and V. Krasnoholovets, Journal of Modern Physics, Vol. 4, 2013, pp. 2731. [7] J. Moffat, International Journal of Modern Physics D, Vol. 2, 1993, pp. 351359. doi:10.1142/S0218271893000246 [8] A. Albrecht and J. Magueijo, Physics Review, Vol. D59, 1999, Article ID: 043516. [9] J. D. Barrow, Physics Letter B, Vol. 564, 2003, pp. 17. doi:10.1016/S03702693(03)005732 [10] P. S. Wesson, “SpaceTimeMatter: Modern KaluzaKlein Theory,” World Scientific Publishing Company, Singa pore, 1999. [11] T. R. Mongan, General Relativity and Gravitation, Vol. 37, 2005, pp. 967970. doi:10.1007/s107140050079y [12] L. Randall and R. Sundrum, Physical Review Letters, Vol. 83, 1999, pp. 46904693. doi:10.1103/PhysRevLett.83.4690 [13] M. Bounias and V. Krasnoholovets, The International Journal of Systems and Cybernetics, Vol. 32, 2003, pp. 10051020. [14] J. Maldacena, Advances in Theoretical and Mathematical Physics, Vol. 2, 1998, pp. 231252. [15] P. J. Steinhardt and N. Turok, Physical Review, Vol. D65, 2002, Article ID: 126003. doi:10.1103/PhysRevD.65.126003 [16] M. Bounias and V. Krasnoholovets, The International Journal of Systems and Cybernetics, Vol. 32, No. 78, 2003, pp. 945975. [17] N. Jarosik, et al., “SevenYear Wilson Microwave Ani sotropy Probe (WMAP) Observations: Sky Maps, Sys tematic Errors, and Basic Results,” 2010. http://lambda.gsfc.nasa.gov/product/map/dr4/pub_papers/ sevenyear/basic_results/wmap_7yr_basic_results.pdf [18] D. Chung, Speculations in Science and Technology, Vol. 20, 1997, pp. 259268. http://arxiv.org/ftp/hepth/papers/0111/0111147.pdf doi:10.1023/A:1026433207862 [19] D. Chung, “The Unified Theory of Physics,” 2012. arXiv:hepth/0201115 [20] T. Padmanabhan, Physics Reports, Vol. 380, 2003, pp. 235320. doi:10.1016/S03701573(03)001200 [21] A. G. Riess, et al., Astrophysical Journal, Vol. 607, 2004, pp. 665687. doi:10.1086/383612 Copyright © 2013 SciRes. JMP
