Applied Mathematics, 2010, 1, 464-469
doi:10.4236/am.2010.16061 Published Online December 2010 (http://www.SciRP.org/journal/am)
Copyright © 2010 SciRes. AM
Some Wgh Inequalities for Univalent Harmonic
Analytic Functions
Poonam Sharma
Department of Mathematics and Astron o my, Uni versi ty of Lucknow , L ucknow , In di a
E-mail: sharma_poonam@lkouniv.ac.in
Received August 2, 2010; revised September 27, 2010; accepted October 2, 2010
Abstract
In this paper, some Wgh inequalities for univalent harmonic analytic functions defined by Wright's genera-
lized hypergeometric (Wgh) functions to be in certain classes are observed and proved. Some consequent
results are also discussed.
Keywords: Harmonic Functions, Harmonic Starlike Functions, Wright’s Generalized Hypergeometric
Functions
1. Introduction and Preliminaries
Let u and v be real valued harmonic functions in a
simply connected domain Din the complex plane,
then a continuous function
f
uiv
is called a com-
plex valued harmonic map in D. Clunie and Sheil-
Small [1] introduced a class SH of complex valued
harmonic maps
f
which are univalent and sense-pre-
serving in the open unit disk

:,1zz z
 and
assume a normalized representation hgwhere
11
11
(),1, (),1
nn
nn
nn
hzhz hgzgzg


 

(1)
are analytic and univalent in
. Let *()SH
denotes
the class of maps
f
hgSH satisfying the condi-
tion

'
() ()
arg( ())ImRe()
()
i
i
i
fre zf z
fre fz
fre










for ,0 1,02
i
zre r
 and 01
, where
'''
()() ()zfzzh zzgz.
Denote by TSH the subclass of function
f
hgSH such that
21
(), ().
nn
nn
nn
hzzh zgzgz


 

Also denote **
() ()THSSH TSH

.
We have following result from the work of Jahangiri
[2]:
Lemma 1. Let
f
hgSH
 , ()hz and ()
g
z are
given by (1), satisfies


11
10
21
nnn n
nn
nh ghg




 (2)
then
f
is sense preserving, harmonic univalent in
and *()fSH
. Furthermore, *()fTSH
if and
only if (2) holds.
For some
1,2, 3,k
, corresponding to ()hz
and ()
g
z defined in (1), let
() () ()
kkk
f
zhzgzSH
 (3)
where for z
,

1
1
0
() ()*1
nk
knk
kn
z
hz hzhz
z

(4)

1
1
0
() ()*1
nk
knk
kn
z
g
zgz gz
z

(5)
'*' stands for convolution. Since
1
11
11
10 10
k
nknk m
nknk m
nn mn
n
hzhzhz
n
 


 

 
()
k
hzand()
k
g
zfor some 2k in (3), represent series
of missing terms which increase with k. Involving
()
k
f
z, defined in (3), a class ()
k
SH
is defined as
follows:
Definition 1. A function
f
hgSH is said to
be in the class ()
k
SH
, if it satisfies the condition
'()
Re ()
k
zf z
fz





, 01,

(6)
P. SHARMA
Copyright © 2010 SciRes. AM
465
where for some k, ()
k
f
z is defined by (3). Func-
tions in the class ()
k
SH
are called harmonic starlike
functions with respect to k-symmetric points of order
.
Note that
*
1() ()SH SH
,2() ()
s
SH SH
and ()
k
TSH
() ,
k
SH TSH
() ().
ss
TSHSH TSH
 The class
()
s
SH
is studied by Ahuja and Jahangiri in [3] (see also
[4]). They also proved following result in [3].
Lemma 2. Let
f
hgSH , ()hz and ()
g
z are
given by (1), satisfies


21 21
10
21
nnn n
nn
nh ghg



 
 (7)
then
f
is sense preserving, harmonic univalent in
and ()
s
fSH
. Furthermore, ()
s
fTSH
if and
only if (7) holds.
Shaqsi and Darus in [5,6] proved that for 01
,
k if ()
k
fSH
, then *()
k
fSH
and proved
following result.
Lemma 3. Let
f
hgSH , ()hz and ()
g
z are
given by (1), satisfies for some k,


11
10
21
n nnknk
nn
nh ghg




 (8)
then
f
is sense preserving, harmonic univalent in
and ()
k
fSH
. Furthermore, ()
k
fTSH
if and
only if (8) holds.
Obviously Inequality (8) is a generalized inequality
ensuring
f
to be in classes *()SH
and ()
s
SH
for 1k and 2k respectively. We see that if in-
equality (8) holds, inequality (2) must hold for any
01
and for 0
both are same. Hence, inequality
(8) for kand 01
 , ensures that
*()fSH
and thus it is used in this study.
If ()0,,gz zwe denote()()
kk
SH S
which
is studied by Wang et al. [7] for

1(12)
() (1 )
z
zz

in
the respective class. The class *
2(0)
s
SS is introduced
by Sakaguchi [8] whose members satisfy the condition
'
2
()
Re 0
()
zh z
hz



,z
where
2
()()
() .
2
hzh z
hz
Connectivity of hypergeometric functions with har-
monic functions is seen through some of the recent pa-
pers [9-11]. Specially involvement of Wright’s genera-
lized hypergeometric (Wgh) functions is studied in
[12-23]. Some Wgh inequalities for starlike and convex
classes have already been obtained in [21,23] for certain
harmonic functions.
The Wright’s generalized hypergeometric (Wgh) func-
tion [24,25], for positive real numbers
,( 1,2,,)
ii
aAi p
and ,( 1,2,,)
ii
bBi q
with
11
10
qp
ii
ii
BA


 , is defined by
 

 





112 2
112 2
1
1
1
,,,,, ;
,,,, ,
,;,
,!
pp
pp
pn
ii
ii iq
n
ii ii
i
aAaAa A
pq Z
bBbBb B
anAz
aA
pq Zz
bB bnBn











(9)
Referring to [26], the series in (9) is absolutely con-
vergent z
if
11
10
qp
ii
ii
BA


 and if
11
10
qp
ii
ii
BA


 , it is absolutely convergent for
1
1
i
i
q
B
i
ipA
i
i
B
z
A
and for 1
1
i
i
q
B
i
ipA
i
i
B
z
A
,
11
1
22
qp
ii
ii
pq
ba


 .
Involving Wgh functions as defined in (9), we consid-
er a univalent, harmonic function ()Wz of the form:
()()()WzHz GzSH (10)
where



1
1
11,
,,1,1
() ,
() ;
1,
()
qii n
iqn
n
ii
iiq
aA
bq
H
zzz z
qbB
a


 


(11)


1,
1,
,,(1,1)
1,
1
()
() ;
()
iis
iis
scC
iss dD
ii
d
Gz z
c




1
,1
n
n
n
z
 
(12)
and

1
(1) ()
:(1) ()
qiii
niiii
anAb
bnB a

 
(13)

1
(1) ()
:(1) ()
qiii
niiii
cnC d
dnDc

 
. (14)
Denote for some

00j and for any
k
,
P. SHARMA
Copyright © 2010 SciRes. AM
466



1,
1,
,,(1,1)
,
1,
:;
iii
q
iii
q
ajkAkA j
jk
qqqbjkBkB
z
z








1,
1,
,,(1,1)
,:;.
1,
iii
s
iii
s
cjkC kCj
jk zz
sss djkD kD






It is noted that at 1z, corresponding series of
,jk
qz,
,jk
szconverge absolutely to
,,
1
j
kjk
s
s
,
,,
1,
j
kjk
ss
respectively if
1)

1
0
q
ii
i
BA

,

1
0
s
ii
i
DC
, or
2)

1
0
q
ii
i
BA

,

1
0
s
ii
i
DC
and either
1
1
i
i
kB
qikA
ii
B
A
,
1
1
i
i
kD
sikC
ii
D
C
, or
1
1
i
i
kB
qikA
ii
B
A
,
1
1
i
i
kD
sikC
ii
D
C
with

1
1
q
ii
i
ba j

,

1
1
s
ii
i
dc j

. (15)
Hence, from (13) and (14), we can easily derive fol-
lowing identities for some 0
j
and k,

,
1
1
()
1()
q
j
k
i
nk q
j
nj ii
b
nj a
 
(16)

,
1
1
()
1()
s
j
k
i
nk s
j
nj ii
d
nj c
 
(17)
provided conditions (1) or (2) of (15) hold. The symbol
()
n
called Pochhammer symbol for non negative n, is
defined by

()(1) (1)
()
n
nn



.
The object of this paper is to examine some Wgh in-
equalities as a necessary and sufficient conditions for
univalent harmonic analytic functions associated with
certain Wgh functions to be in the function class
()
k
SH
for some kand in particular *()SH
and
()
s
SH
. Some consequent results and a convolution
property are also derived.
2. Some Wgh Inequalities
In order to derive Wgh inequalities, we use Lemma 3.
Theorem 1. Let ()()()WzHz GzSH be given
by (10), if for
1)

1
0
q
ii
i
BA

,

1
0
s
ii
i
DC
, or
2)

1
0
q
ii
i
BA
,

1
0
s
ii
i
DC

and either for
some k
,
1
1
i
i
kB
qikA
ii
B
A
,
1
1
i
i
kD
sikC
ii
D
C
, or
1
1
i
i
kB
qikA
ii
B
A
,
1
1
i
i
kD
sikC
ii
D
C
with

1
2
q
ii
i
ba
,

1
2
s
ii
i
dc
, and for some k, Wgh inequality

0,10, 1,1
1
()
()
qk
iqqq
ii
b
a
 


0,10, 1,1
1
() 21
()
sk
isss
ii
d
c

 
(18)
holds, then ()Wz is sense preserving, harmonic univa-
lent in
and ()( )
k
Wz SH
.
Furthermore, 1
()
()2()( )
k
Hz
WzzGz TSH
z




if and only if (18) holds.
Proof. To show ()Wz is sense preserving, harmonic
univalent in
and ()( )
k
Wz SH
, we need to show
by Lemma 3, that
11
10
:nnk
nn
Sn





1
10
2(1 ).
nnk
nn
n







 (19)
From the given hypothesis and with the use of identi-
ties (16) and (17) for 0,1j
and for anyk
, we
observe that
11
210
(1)
nn nk
nnn
Sn



 

1
110
(1)
nn nk
nnn
n



 

1,1 0,10,
1
()
()
qk
iqq q
ii
b
a
 

1,1 0,10,
1
() 21
()
sk
iss s
ii
d
c


  

if inequality (18) holds. Furthermore, if1()( )
k
Wz TSH
,
by Lemma 3, inequality (19) holds and hence (18) holds.
This proves Theorem 1.
Taking k1
, in Theorem 1, we get following result.
Corolla ry 1. With the same hypothesis of Theorem 1,
for k1
if Wgh inequality
P. SHARMA
Copyright © 2010 SciRes. AM
467




0,11,1
1
0,1 1,1
1
() 1
()
()
(1)2 1,
()
qiqq
ii
siss
ii
b
a
d
c


 
(20)
holds, then ()Wz is sense preserving, harmonic univa-
lent in and *
()( )Wz SH
. Furthermore,
*
1
()
()2()( )
Hz
WzzGz TSH
z



 if and only if
(20) holds.
Remark 1. Taking (1,2,,)
ii
A
Bi q
and
(1,2,,)
ii
CDi s, the inequality of Corollary 1
coincides with Theorem 3.1 in [23] for
p
1.
Taking k2 in Theorem 1, we get following result.
Corolla ry 2. With the same hypothesis of Theorem 1,
for k2 if Wgh inequality

0,10,2 1,1
1
()
()
qiqqq
ii
b
a



0,10,2 1,1
1
() 21
()
sisss
ii
d
c

 
(21)
holds, then ()Wz is sense preserving, harmonic univa-
lent in and ()( )
s
Wz SH
.
Furthermore, 1
()
()2()()
s
Hz
WzzGz TSH
z




if and only if (21) holds.
3. Consequences of Wgh Inequalities
Involving Mittag-Leffler functions [25]: 11
1,1
,()
Bb
Ez

11
(1,1)
11 ,;
bB z


,

11 11
1,1 (1,1)
,11
,
() ;
Dd dD
Ez z



, for positive
real numbers 111 1
,and,bB dD, we consider a univalent,
harmonic function ()Ez for 1
of the form:
111 1
1,1 1,1
1, 1,
()()()()()
Bb Dd
EzzbEzzd EzSH
 (22)
Denote for some

00j and k,

11 1111
1,1 (1,1)
,11
,
(); ,
jj
kB bjkBbjkBkB
Ez z



11 1111
1,1 (1,1)
,11
,
(); .
jj
kD djkDdjkDkD
Ez z


At 1z, corresponding series of 111
1,1
,()
j
kB bjkB
Ez
,
11 1
1,1
,()
j
kD djkD
Ez
converge absolutely to
11 111 1
1,11,1
,,
(1) ,
jj
kB bjkBkB bjkB
EE


11 111 1
1,1 1,1
,,
(1) ,
jj
kD djkDkDdjkD
EE


respectively. Following result can be directly obtained
from Theorem 1.
Corolla ry 3. Let ()Ezbe defined by (22), if for some
k
, inequality


111111 1
1111111
1,11,1 2,1
1,,,
1,11,1 2,1
1,,,
()
()21 ,
BbkBbBb B
DdkDdDd D
bEEE
dEE E



(23)
holds, then ()Ez is sense preserving, harmonic univa-
lent in
and ()( )
k
Ez SH
. Furthermore,

111 1
1
1,1 1,1
1, 1,
()
2() ()()()()
BbDd k
Ez
zbEzzdEzTSH
 
if and only if (23) holds.
Results similar to the Corollaries 1 and 2, for
()Ez and 1()Ezcan be obtained by taking k1
and
k2
respectively in Corollary 3.
On taking1
ii
AB
,1, 2, 3,,iq
and 1
ii
CD
,
1,2, 3,,is
, ()Wzreduces to
 
( )([]),([]),,
qi si
F
zzFaz zFczSH
 
(24)
which involve the generalized hypergeometric functions:



1,
1,
,1,(1,1)
1,1
([ ]),;
iq
iq
a
qiqq b
F
az z




,



1,
1,
,1, (1,1)
1,1
([ ]),;
is
is
c
sissd
F
cz z




.
Also, if ==1,
ii
AB =1,2,3, ,iqand==1,
ii
CD
=1,2,3,, ,isfor some

00j andk
,
we get

,,
=1 =1
()
=(1) ,
()
qq
ijk
ijk jk
qq
ii
iijk
a
bjF
ab



,,
=1 =1
()
=(1) ()
ss
ijk
ijk jk
ss
ii
iijk
c
djF
cd


,
where
,,
=0 =1
()(1)
:=([]),
()!
q
jk jkilk l
qqi
liilk
ajk j
FFa bjkl

,,
=0 =1
()(1)
:=([])()!
s
jk jkilk l
ssi
liilk
cjk j
FFc djk l

provided

1
1
q
ii
i
ba j

,

1
1
s
ii
i
dc j

.
From Theorem 1, we obtain following result.
Corollary 4. Let ()
F
z be defined by (24), if for
some k
and

1
2
q
ii
i
ba
,

1
2
s
ii
i
dc

,
inequality
0,10, 1,1
=1
q
ki
qqq
ii
a
FFF
b

P. SHARMA
Copyright © 2010 SciRes. AM
468

0,10, 1,1
=1
21
s
ki
sss
ii
c
FFF
d


 


(25)
holds, then ()
F
z is sense preserving, harmonic univa-
lent in and ()()
k
Fz SH
. Furthermore,



1( )2([]),([]),()
qisi k
FzzFa zzFcz TSH

if and only if (25) holds.
Results similar to the Corollaries 1 and 2, for
()
F
zand 1()
F
zcan be obtained by taking k1
and
k2 respectively in Corollary 4.
Further, taking 2qs,22
1bd, in Corollary 4,
we get following result for a harmonic univalent function
defined by Gauss hypergeometric functions.
Corollary 5. Let for positive real values of
12112 1
,,,,,aabccd and for 1
, a harmonic univalent
function:

21121 21121
(),;;,;;.GzzFaabzzFccdz SH
 
If for some kand

112
>1,baa

11 2
>1,dcc
inequality

0,1 0,
12
22
112
1 ([]) ([])
1
k
ii
aa
F
aFa
baa







0,1 0,
12
22
11 2
||1 ([])([])
1
k
ii
cc Fc Fc
dcc



 







2(1 ),
 (26)
holds, then ()Gz is sense preserving, harmonic
univalent in and ()().
k
Gz SH
Furthermore,



12112121121
()2,;;,;;( )
k
GzzFaabzzFccdz TSH

if and only if (26) holds.
Results similar to the Corollaries 1 and 2, for
()Gzand 1()Gzcan be obtained by taking k1
and
k2 respectively in Corollary 5.
4. Convolution Property
In this section, we obtain a covolution property for
functions belonging to the class ().
k
SH
Theorem 2. A function=()
k
fhgSH
 for some
k if and only if




2
12 1
() 1
1k
zz
hz z
z











2
121
() 0,
1
1k
zz
gz z
z




 


=1,1,0< <1.z


Proof. From the definition of the function class
(),
k
SH
f
(),
k
SH
if and only if
1()1
,
(1)()1
'
k
zf z
fz







for =1,1,0< <1.z

 Hence by simple
calculations, we get
 
1() ()1(1)()0.
'
kk
zfzf zf z





Using (3), we get

 
1()() ()()
11
''
kk
zz
zhzzgzh zg z
zz





 
1(1) ()()0
11
kk
zz
hz gz
zz



 




which easily derives the result.
Based on Theorem 2, we get that harmonic functions,
()()()WzHz Gz
111 1
1,1 1,1
1, 1,
()()()()()
Bb Dd
EzzbEzzdEz
, and
 
( )([]),([]),,
qi si
F
zzFaz zFcz
 defined in (10),
(22) and (24) respectively belong to the class ()
k
SH
for some k
if and only if for
=1,1,0< <1,z






2
12 1
() 1
1k
zz
Hz z
z







2
12 1
() 0,
1
1k
zz
Gz z
z











11
1,1
1, 2
12 1
() ()1
1
Bb k
zz
zbE zz
z







11
1,1
1, 2
121
() ()0
1
1
Dd k
zz
zdE zz
z




 


and





2
12 1
([]),1
1
qi k
zz
zFa zz
z








2
121
([ ]),0
1
1
si k
zz
zFc zz
z







respectively hold.
P. SHARMA
Copyright © 2010 SciRes. AM
469
5. References
[1] J. Clunie and T. Sheil-Small, “Harmonic Univalent Func-
tions,” Annales Academiae Scientiarum Fennicae. Series
A I. Mathematica, Vol. 9, 1984, pp. 3-26.
[2] J. M. Jahangiri, “Harmonic Functions Starlike in the Unit
Disk,” Journal of Mathematical Analysis and Applica-
tions, Vol. 235, No. 2, 1999, pp. 470-477.
[3] O. P. Ahuja and J. M. Jahangiri, “Sakaguchi-Type Har-
monic Univalent Functions,” Scientiae Mathematicae
Japonicae, Vol. 59, 2004, pp. 239-244.
[4] H. Ö. Ġuney, “Sakaguchi-Type Harmonic Univalent
Functions with Negative Coefficients,” International
Journal of Contemporary Mathematical Sciences, Vol. 2,
No. 10, 2007, pp. 459-463.
[5] M. Al. Shaqsi and M. Darus, “On Subclass of Harmonic
Starlike Functions with Respect to K-Symmetric Points,”
International Mathematical Forum, Vol. 2, No. 57, 2007,
pp. 2799-2805.
[6] M. Al. Shaqsi and M. Darus, “On Harmonic Univalent
Functions with Respect to K-Symmetric Points,” Interna-
tional Journal of Contemporary Mathematical Sciences,
Vol. 3, No. 1-4, 2008, pp. 111-118.
[7] Z. G. Wang, C. Y. Gao and S. M. Yuan, “On Certain
Subclasses of Close-to-Convex and Quasi-Convex Func-
tions with Respect to K-Symmetric Points,” Journal of
Mathematical Analysis and Applications, Vol. 322, No. 1,
2006, pp. 97-106.
[8] K. Sakaguchi, “On Certain Univalent Mapping,” Math-
matical Society of Japan, Vol. 11, 1959, pp. 72-75.
[9] O. P. Ahuja, “Planar Harmonic Convolution Operators
Generated by Hypergeometric Functions,” Integral
Transforms and Special Functions, Vol. 18, No. 3, 2007,
pp. 165-177.
[10] O. P. Ahuja, “Harmonic Starlike and Convexity of
Integral Operators Generated by Hypergeometric Series,”
Integral Transforms and Special Functions, Vol. 20, No.
8, 2009, pp. 629-641.
[11] O. P. Ahuja and H. Silverman, “Inequalities Associating
Hypergeomatric Functions with Planer Harmonic Map-
pings,” Journal of Inequalities in Pure and Applied Ma-
thematics, Vol. 5, No. 4, 2004.
[12] M. K. Aouf and J. Dziok, “Distortion and Convolutional
Theorems for Operators of Generalized Fractional Cal-
culus Involving Wright Function,” Journal of Applied
Analysis, Vol. 14, No. 2, 2008, pp. 183-192.
[13] M. K. Aouf and J. Dziok, “Certain Class of Analytic
Functions Associated with the Wright Generalized
Hypergeometric Function,” Journal of Mathematics and
Applications, Vol. 30, 2008, pp. 23-32.
[14] J. Dziok and R. K. Raina, “Families of Analytic Func
tions Associated with the Wright Generalized Hyper-
geometric Function,” Demonstratio Mathematica, Vol.
37, No. 3, 2004, pp. 533-542.
[15] J. Dziok and R. K. Raina, “Some Results Based on First
Order Differential Subordination with the Wright’s Ge-
neralized Hypergeometric Function,” Commentarii Math-
ematici Universitatis Sancti Pauli, Vol. 58, No. 2, 2009,
pp. 87-94.
[16] J. Dziok, R. K. Raina and H. M. Srivastava, “Some
Classes of Analytic Functions Associated with Operators
on Hilbert Space Involving Wright’s Generalized Hyper-
geometric Function,” Proceedings of the Jangjeon Ma-
thematical Society, Vol. 7, 2004, pp. 43-55.
[17] G. Murugusundaramoorthy and R. K. Raina, “On a Sub-
class of Harmonic Functions Associated with the Wr-
ight’s Generalized Hypergeometric Functions,” Hacet-
tepe Journal of Mathematics and Statistics, Vol. 38, No.
2, 2009, pp. 129-136.
[18] G. Murugusundaramoorthy and K. Vijaya, “A Subclass
of Harmonic Functions Associated with Wright’s Hyper-
geometric Functions,” Applied Mathematics, Vol. 1, No.
2, 2010, pp. 87-93.
[19] R. K. Raina, “Certain Subclasses of Analytic Functions
with Fixed Argument of Coefficients Involving the
Wright’s Function,” Tamsui Oxford Journal of Mathe-
matical Sciences, Vol. 22, No. 1, 2006, pp. 51-59.
[20] R. K. Raina, “On Generalized Wright’s Hypergeometric
Functions and Fractional Calculus Operators,” East Asian
Journal of Mathematics, Vol. 21, No. 2, 2005, pp. 191-
203.
[21] R. K. Raina and P. Sharma, “Harmonic Univalent Func-
tions Associated with Wright’s Generalized Hyper- geo-
metric Functions,” Integral Transform and Special Func-
tions, Communicated for Publication.
[22] P. Sharma, “A Class of Multivalent Analytic Functions
with Fixed Argument of Coefficients Involving Wright’s
Generalized Hypergeometric Functions,” Bulletin of Ma-
thematical Analysis and Applications, Vol. 2, No. 1, 2010,
pp. 56-65.
[23] P. Sharma, “Multivalent Harmonic Functions Defined by
M-Tuple Integral Operators,” Commentationes Mathe-
maticae, Vol. 50, No. 1, 2010, pp. 87-101.
[24] E. M. Wright, “The Asymptotic Expansion of the Gene-
ralized Hypergeometric Function,” Proceedings London
Mathematical Society, Vol. 46, No.1, 1946, pp. 389-408
[25] H. M. Srivastava and H. L. Manocha, “A Treatise on
Generating Functions,” Halsted Press, Ellis Horwood
Limited, Hichester, 1984.
[26] A. A. Kilbas, M. Saigo and J. J. Trujillo, “On the Genera-
lized Wright Function,” Fractional Calculus and Applied
Analysis, Vol. 5, No. 4, 2002, pp. 437-460.