M. SATO

36

Triple Systems,” Journal of Algebra, Vol. 110, No. 1,

1987, pp. 108-123. doi:10.1016/0021-8693(87)90038-X

[3] S. Okubo and N. Kamiya, “Quasi-Classical Lie Superal-

gebras and Lie Supertriple Systems,” Communications in

Algebra, Vol. 30, No. 8, 2002, pp. 3825-3850.

[4] J. Bagger and N. Lambert, “Modeling Multiple M2-

Branes,” Physical Review D, Vol. 75, No. 4, 2007, Article

ID: 045020. doi:10.1103/PhysRevD.75.045020

[5] A. Gustavsson, “Algebraic Structures on Parallel M2-

Branes,” Nuclear Physics B, Vol. 811, No. 1-2, 2009, pp.

66-76. doi:10.1016/j.nuclphysb.2008.11.014

[6] J. Bagger and N. Lambert, “Gauge Symmetry and Super-

symmetry of Multiple M2-Branes,” Physical Review D,

Vol. 77, No. 6, 2008, Article ID: 065008.

doi:10.1103/PhysRevD.77.065008

[7] S. Mukhi and C. Papageorgakis, “M2 to D2,” Journal of

High Energy Physics, Vol. 5, 2008, p. 85.

[8] J. Gomis, G. Milanesi and J. G. Russo, “Bagger-Lambert

Theory for General Lie Algebras,” Journal of High En-

ergy Physics, Vol. 6, 2008, pp. 75.

[9] S. Benvenuti, D. Rodriguez-Gomez, E. Tonni and H.

Verlinde, “ = 8 Superconformal Gauge Theories and

M2-Branes,” Journal of High Energy Physics, Vol. 1,

2009, p. 78.

[10] P.-M. Ho, Y. Imamura and Y. Matsuo, “M2 to D2 Revis-

ited,” Journal of High Energy Physics, Vol. 7, 2008, p. 3.

[11] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacen a,

“ = 6 Superconformal Chern-Simons-Matter Theories,

M2-Branes and Their Gravity Duals,” Journal of High

Energy Physics, Vol. 10, 2008, p. 91.

[12] J. Bagger and N. Lambert, “Three-Algebras and = 6

Chern-Simons Gauge Theories,” Physical Review D, Vol.

79, No. 2, 2009, Article ID: 025002.

doi:10.1103/PhysRevD.79.025002

[13] Y. Nambu, “Generalized Hamiltonian dynamics,” Physi-

cal Review D, Vol. 7, No. 8, 1973, pp. 2405-2412.

doi:10.1103/PhysRevD.7.2405

[14] H. Awata, M. Li, D. Minic and T. Yoneya, “On the Quan-

tization of Nambu Brackets,” Journal of High Energy

Physics, Vol. 2, 2001, p. 13.

doi:10.1088/1126-6708/2001/02/013

[15] D. Minic, “M-Theory and Deformation Quantization,”

1999. arXiv:hep-th/9909022

[16] J. Figueroa-O’Farrill and G. Papadopoulos, “Pluecker-

Type Relations for Orthogonal Planes,” Journal of Ge-

ometry and Physics, Vol. 49, No. 3-4, 2004, pp. 294-331.

doi:10.1016/S0393-0440(03)00093-7

[17] G. Papadopoulos, “M2-Branes, 3-Lie Algebras and Plu-

cker Relations,” Journal of High Energy Physics, Vol. 5,

2008, p. 54. doi:10.1088/1126-6708/2008/05/054

[18] J. P. Gauntlett and J. B. Gutowski, “Constraining Maxi-

mally Supersymmetric Membrane Actions,” Journal of

High Energy Physics, Vol. 6, 2008, p. 53.

doi:10.1088/1126-6708/2008/06/053

[19] D. Gaiotto and E. Witten, “Janus Configurations, Chern-

Simons Couplings, and the Theta-Angle in = 4 Su-

per Yang-Mills Theory,” 2010. arXiv:0804.2907[hep-th]

[20] Y. Honma, S. Iso, Y. Sumitomo and S. Zhang, “Janus

Field Theories from Multiple M2-Branes,” Physical Re-

view D, Vol. 78, No. 2, 2008, Article ID: 025027.

doi:10.1103/PhysRevD.78.025027

[21] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park,

“ = 5, 6 Superconformal Chern-Simons Theories and

M2-Branes on Orbifolds,” Journal of High Energy Phys-

ics, Vol. 9, 2008, p. 2.

doi:10.1088/1126-6708/2008/09/002

[22] M. Schnabl and Y. Tachikawa, “Classification of =

6 Superconformal Theories of ABJM Type,” 2010.

arXiv:0807.1102[hep-th]

[23] M. A. Bandres, A. E. Lipstein and J. H. Schwarz, “Ghost-

Free Superconformal Action for Multiple M2-Branes,”

Journal of High Energy Physics, Vol. 7, 2008, p. 117.

doi:10.1088/1126-6708/2008/07/117

[24] P. de Medeiros, J. Figueroa-O’Farrill, E. Méndez-Escobar

and P. Ritter, “On the Lie-Algebraic Origin of Metric 3-

Algebras,” Communications in Mathematical Physics,

Vol. 290, No. 3, 2009, pp. 871-902.

doi:10.1007/s00220-009-0760-1

[25] S. A. Cherkis, V. Dotsenko and C. Saeman, “On Super-

space Actions for Multiple M2-Branes, Metric 3-Algebras

and Their Classification,” Physical Review D, Vol. 79, No.

8, 2009, Article ID: 086002.

doi:10.1103/PhysRevD.79.086002

[26] P.-M. Ho, Y. Matsuo and S. Shiba, “Lorentzian Lie 3-

Algebra and Toroidal Compactification of M/String The-

ory,” 2003. arXiv:0901.2003[hep-th]

[27] K. Lee and J. Park, “Three-Algebra for Supermembrane

and Two-Algebra for Superstring,” 2009.

arXiv:0902.2417[hep-th]

[28] P. de Medeiros, J. Figueroa-O’Farrill, E. Mendez-Escobar

and P. Ritter, “Metric 3-Lie Algebras for Unitary Bagger-

Lambert Theori es,” Journal of High Energy Physics, Vol.

4, 2009, p. 37.

[29] C. Castro, “On n-Ary Algebras, Branes and Polyvector

Gauge Theories in Noncommutative Clifford Spaces,”

Journal of Physics A, Vol. 43, No. 36, 2010, Article ID:

365201. doi:10.1088/1751-8113/43/36/365201

[30] M. Sato, “Covariant Formulation of M-Theory,” Interna-

tional Journal of Modern Physics A, Vol. 24, No. 27,

2009, p. 5019. doi:10.1142/S0217751X09047661

[31] M. Sato, “On Supersymmetry of the Covariant 3-Algebra

Model f or M-Theo ry, ” Journal of Modern Physics, Vol. 3

2012, p. 1813. doi:10.4236/jmp.2012.311226

[32] M. Sato, “Model of M-Theory with Eleven Matrices,”

Journal of High Energy Physics, Vol. 7, 2010, p. 26.

doi:10.1007/JHEP07(2010)026

[33] M. Sato, “Supersymmetry and the Discrete Light-Cone

Quantization Limit of the Lie 3-Algebra Model of

M-Theory,” Physical Review D, Vol. 85, No. 4, 2012, Ar-

ticle ID: 046003. doi:10.1103/PhysRevD.85.046003

[34] M. Sato, “Zariski Quantization as Second Quantization,”

Physical Review D, Vol. 85, No. 12, 2012, Article ID:

126012. doi:10.1103/PhysRevD.85.126012

Copyright © 2013 SciRes. JMP