Journal of Modern Physics, 2013, 4, 495-500
http://dx.doi.org/10.4236/jmp.2013.44070 Published Online April 2013 (http://www.scirp.org/journal/jmp)
M
Expansion of UPMNS and Neutrino Mass Matrix
in
Terms of sinθ13 for Inverted Hierarchical Case
Subhankar Roy, Nangkham Nimai Singh
Department of Physics, Gauhati University, Guwahati, India
Email: meetsubhankar@gmail.com, nimai03@yahoo.com
Received January 1, 2013; revised January 31, 2013; accepted February 8, 2013
Copyright © 2013 Subhankar Roy, Nangkham Nimai Singh. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.
ABSTRACT
The recent observational data supports the deviation from Tri-bimaximal (TBM) mixing. Different theories suggest the
interdependency among the observational parameters involving the mixing angles. On phenomenological ground, we
try to construct the PMNS matrix, UPMNS with certain analytic structure satisfying spontaneously the unitary condition,
in terms of a single observational parameter 13
sin .
We hypothesise the three neutrino masses, mi as functions of
M
13
sin
and then construct the neutrino mass matrix
with certain exact and expandable form. We assume the con-
vergence of the model to TBM mixing when 13
is taken 0. The mass matrix so far obtained can be employed for va-
rious applications including the estimation of matter-antimatter asymmetry of the universe.
Keywords: Inverted Hierarchy; Tri-Bimaximal Mixing; Neutrino Masses; -
Symmetry
1. Introduction
Recent results published by Double Chooz [1], Daya Bay
[2], RENO [3], T2K [4] and MINOS [5] collaborations
assure relatively large reactor angle
13
. Also recent
global neutrino data analysis [6] insists on 23 π4
.
Tri-bimaximal mixing [7] is associated with 13 0
, and
23 π4
. This symmetry has a strong theoretical support
because of its relation with so called
symmetry of
neutrino mass matrix.
symmetry, in turn is asso-
ciated with 4
A
[8-12], one of the candidates of discrete
flavour symmetry groups. But in order to comply with the
recent experimental results, some perturbations have to be
introduced in this mixing pattern. Whether the corrections
[13,14] are needed or a new mixing scheme is to be in-
troduced, is still an open question [15].
Literature [16,17] shows the dependency of the mixing
angles on one another. If this is true, then we are allowed
to choose a single parameter capable of describing all the
three mixing angles.
We move a step ahead and express the three masses
under this parameter. This helps us to define a simplified
neutrino mass model with a single parameter only.
Out of all the three observational parameters concern-
ing the mixing angles 13
sin
is the smallest one. So, we
choose 13
sin
as the guiding parameter. We consider tri-
bimaximal mixing pattern and -
sin 0.
symmetry as the
first approximation. Hence the model is supposed to
produce T. B. M mixing when we put 13
We try
to keep the structure of the three rotation matrices
U13
23
U
U12
,
and
in analytical form so that
they can satisfy the unitary condition
 
ij ij
UU I



13
s
,
without any prior approximation.
We start with the following ansatz,
, (1)
12
1,
5
3
s
(2)
23
1
2
2
s
sins
. (3)
where, ij ij
, and then construct the PMNS mixing
matrix and then the neutrino mass matrix in the usual way.
2. Construction of the PMNS Matrix
We consider the charged lepton mass matrix to be diago-
nal. Hence we can choose PMNS
UU
. We propose the
three rotation matrices as:
C
opyright © 2013 SciRes. JMP
S. ROY, N. N. SINGH
496



1
2
13
10
01
e0
U
2i
1
i2
2
e
0
1










, (4)


1
22
23
10
024
11
022
U






1
22
0
11
2
22
4
22
















, (5)

1
22
12
22
325
53
12
53
35
00
U





 
1
22
10
5
3
2
0
25
3
1

















123
2 3
123
ee e
uuu
uuu
uuu
 
 






. (6)
We have,


PMNS 23 13 121
UU
UU

(7)
where,

1
22
1,ua
1e

1
22
11,
3



i
3e,
e
u
25
e
u

 
i
11
e,
2a
153 3
30 2
ub





 


i
2
12353e,ucb

30


1
22
3
121
2
u
 
,
 
i
1
111 e
2510
23
ubd


 





 ,


i
2
11
353 e
230
2
ua b

 


 ,


2
3
11,
2
ub


and,
1
22
12 ,
325
53
a
 





1
22
222,b


1
22
150 309,c 

1
2
2
50 10
33
d




 

PMNS PMNS
100
010.
001
ij ij
UU UU



 

 

.
It can be checked that,
(8)
And we get,
22
22
12 2
1
2510 33
tan 5010 33
e
e
u
u





(9)
22
22
12 2
1
2510 33
tan 5010 33
e
e
u
u





(10)
After interpreting the above two relations in terms of
sinθ13, we have,
223
1213 1313
11 12
tansinsinsin ,
22 425
 
  (11)
223
231313 13
13
tan1 sin2sin2sin
5


PMNS
U0
. (12)
for
and 0.156
are shown below,
TBM
21
0
33
11 1
63 2
11 1
63 2
U











i
ii
ii
0.82740.5395 0.156e
0.42450.0822e0.6511 0.0536e0.6214 .
435 0.1015e0.5270 0.0662e0.7678
U




 




,
0.3
Copyright © 2013 SciRes. JMP
S. ROY, N. N. SINGH 497
This is clear from the above analysis that 12
and , if 13
2
tan 0.5
ta sin
2
23
n 1
0

2
23
tan
(TBM mixing). At
(N. H), 0.156 (I. H) (the best-fit value of sinθ13)
[6], we get and ,
which are very close to the best fit results [6]: 12
0.1
0.657,0.654
2
tan
55
2
12
tan
0.425
=
0.443 (N. H or I. H) and (N. H) and
0.644 (I. H). This is shown in Figure 1, where the varia-
2
23
tan 0.628
tions of 2
12
tan
and ta 2
23
n
are plotted against 13
sin
.
3. Jarkslog Parameter (Jcp)
We introduce the CP phase
in U13 as shown in Equa-
tion (8). The inclusion of cp
does not affect 2
12
tan
or
2
tan 23
(Equations (9) and (10)).
We obtain the as,
cp
J

2
1131
1
22
22
Im 1
122
243 2
253
cpe e
Juuuu






 



 
1
11
25
23
sin
5








,
(13)
Maximum cp i.e., max
J
J
is obtained for π2
.
For, max
0.156,
J
is obtained as 0.0341. The varia-
tion of max
J
with respect to sin 13
is shown in Figure
2. Also the variation of cp with
J
(with or 13
sin
fixed at 0.156), is plotted in Figure 3.
4. Generation of Neutrino Mass Matrix with
Inverted Hierarchy
We now apply the PMNS mixing matrix from Equation
(7), to construct the neutrino mass matrix with inverted
hierarchy (I. H). We try to interpret the masses in terms of
the same parameter 13
sin
.
We choose on phenomenological ground the absolute
values of three neutrino masses in units of eV as,
4
607 ,
1250 8

1
m (14)
5
4
7,
8 3

2
61
1250
m (15)
4
3
7.
8
m (16)
leading to,
4
25
21
121 761
Δ
15625005000 1875
m
910
71,
12 9
 (17)
4
910
71 .
12 9

2
Δm2
m
0,2
Δ7.74 eV
2252
7.53 10eVm

0.156.
25
23
3721 42761
Δ
15625005000 1875
m
(18)
The variations of 21 and 23
Δ with are shown
in Figures 4 and 5. At TBM mixing condition, i.e., at
we get, ,
and 21
Δ,
are obtained at
25
10
21
m
23
eV ,
3
eV
23
Δ10m
23 10m
2.38
2
2.43 2
Figure 1. Variation of tan2θ12 and tan2θ23 with .
Figure 2. Variation of Jmax with .
Figure 3. Variation of Jcp with δ.
Figure 4. Variation of with . m2
21
Δ
Copyright © 2013 SciRes. JMP
S. ROY, N. N. SINGH
498
Figure 5. Variation of with .
For simplicity in the texture of the neutrino mass matrix,
we avoid the inclusion of cp
. Using Equation (7) for
PMNS (with cp
U0
) and Equations (14)-(16) for i,
we construct the neutrino mass matrix
m
M
as follows,
1
T
PMNS2 PMNS
3
11 1213
21 2223
31 3233
00
00
00
.
m
MUm U
m
mmm
mmm
mmm


 








(19)
where,
m2
23
Δ




2
62 242
11
7671
11,
81258 5
3
mAB 

 
 
 
 



 


 
11
2 4
22
671 1
11
82125852
232
111
1,
525
323
mACA
BCA
52
12
1
22
71

 




 

 



 

 

 


 




 






 


 
11
52 2
22
13
14
22
7111
11
8552
332
67 11
1,
5
mCBC A
AAC

 
125 8 2
23








 

 



 

 




 
 
2
82
12585
23
11 ,
25
23
BAC
2
24
42
22
7167121
12
2
mCA


 
 


 
 
 
 














 


   
  
4
2
23
71
1
82
2
1,
5
3
mC
A
CA

 








 

 
4
11 1
(
5225
32 3
671 11
125 8522
322
BC AC
AC

 



 


 





 









 

 


 
 
4
2
33
2
4
71
1
85
32
611
7.
125 825
23
mC BCA
CA


 









 

 






 

 
2
1
2
Copyright © 2013 SciRes. JMP
S. ROY, N. N. SINGH 499
and,

1
22
22 ,
325
53




A

1
45
2
7,
8 3



61
1250
B

1
22
24
2
C




0
-
1.
At, (T. B. M mixing), Equation (22) reduces to
22
0
22
11
symmetric mass matrix form,
1
1
1
M
m







1,2

1,
, (20)
with
for inverted hierarchy. Equation (19) leads
to
1
2
121 1
3750
1
0.0157 0.0323
0.0323 0.0083
0.0323 0.0083
MM



11
1 1
4 4
11
44
0.0323
0.0083 ,
0.0083












12
,,
1250 1250
mm
3
6061 0in eVm
0.156
0.0255
0.0118 .
0.0142
MM M

0.0068
0.0035
5 0.0059
3
0005
sin
(21)
At , Equation (22) leads to
0.0189 0.0362
0.0362 0.0049
0.0255 0.0118
 

(22)
where,
0.0032 0.0039
Δ0.0039 0.0034
0.0068 0.003
M

12
0.0485,0.0493, 0.mm m
in eV.
5. Summary
We have started with a parameter equating this to
13
thesis by comparing the ranges of the mass squared dif-
ferences as a result of our ansatz with the 1
range,
experimentally obtained. We take the range of as the
experimental
1
range of 13
sin
[6]. We obtain the
range of and as
and
2
21
m2
23
m

52
7.46 - 7.5810eV
32
2.42 - 2.4410eV
respectively. The respec-
tive ranges obtained, lie within the experimental 1
boundary [6]. This provides a support to our hypothesis
i as
and construct the PMNS matrix, PMNS . Then
we represent the neutrino masses U
1,2,3i in terms of
the same parameter
m
13
nsi ,
i.e. We verify our hypo-
.
m
i. This is to be emphasised that the PMNS
U
matrix as proposed in Equation (7) satisfies the unitary
condition and is not dependent on the choice of the order
of . The introduction of cp
m
does not affect 12
2
tan
and 23
2
tan
in our calculation. The maximum ob-
tained is 0.034 (with respect to 13
cp
J
sin 0.156

,
). Fi-
nally we concentrate on the construction of
M
the
neutrino mass matrix. The present investigation though
phenomenological, gives a complete picture of the texture
of the neutrino mass matrix which can be employed in
other applications regarding baryon asymmetry of the
universe [18]. Although we have constructed the mass
matrix for inverted hierarchical model, yet we can extend
our technique to Normal as well as Quasidegenerate mass
models.
REFERENCES
[1] Y. Abe, et al., “Indication for the Disappearance of Reac-
tor Electron Antineutrinos in the Double Chooz Experi-
ment,” Physical Review Letters, Vol. 108, No. 13, 2012,
pp. 131801-131807.
doi:10.1103/PhysRevLett.108.131801
[2] F. An, et al., “Observation of Electron-Antineutrino Dis-
appearance at Daya Bay,” Physical Review Letters, Vol.
108, No. 17, 2012, pp. 171803-171809.
[3] J. Ahn, et al., “Observation of Reactor Electron Antineu-
trino Disappearance in the RENO Experiment,” Physical
Review Letters, Vol. 108, No. 18, 2012, Article ID:
191802. doi:10.1103/PhysRevLett.108.191802
[4] K. Abe, et al., “Indication of Electron Neutrino Appear-
ance from an Accelerator Produced Off-Axis Muon Neu-
trino Beam,” Physical Review Letters, Vol. 107, No. 4,
2011, Article ID: 041801.
doi:10.1103/PhysRevLett.107.041801
[5] R. Nichol, “Plenary Talk at the Neutrino 2012 Confer-
ence,” 2012. http://neu2012.kek.jp/
[6] G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palaz-
zo and A. M. Rotunno, “Global Analysis of Neutrino
Masses, Mixings and Phases: Entering the Era of Lepto-
nic CP Violation Searches,” Physical Review D, Vol. 86,
No. 1, 2012, Article ID: 013012.
doi:10.1103/PhysRevD.86.013012
[7] P. F. Harrison, D. H. Perkins and W. G. Scott, “Tri-Bima-
ximal Mixing and the Neutrino Oscillation Data,” Physics
Letters B, Vol. 530, No. 1-4, 2002, pp. 167-173.
doi:10.1016/S0370-2693(02)01336-9
[8] K. S. Babu, E. Ma and J. W. F. Valle, “Underlying A4
Copyright © 2013 SciRes. JMP
S. ROY, N. N. SINGH
500
Symmetry for the Neutrino Mass Matrix and the Quark
Mixing Matrix,” Physics Letters B, Vol. 552, No. 3-4,
2003, pp. 207-213. doi:10.1016/S0370-2693(02)03153-2
[9] E. Ma, “The All-Purpose Neutrino Mass Matrix,” Physi-
cal Review D, Vol. 66, No. 11, 2002, pp. 117301-
11117303. doi:10.1103/PhysRevD.66.117301
[10] G. Altarelli and F. Feruglio, “Tri-Bimaximal Neutrino
Mixing from Discrete Symmetry in Extra Dimensions,”
Nuclear Physics B, Vol. 720, No. 1-2, 2005, pp. 64-88.
doi:10.1016/j.nuclphysb.2005.05.005
[11] G. Altarelli and F. feruglio, “Tri-Bimaximal Neutrino
Mixing, A4 and the Modular Symmetry,” Nuclear Physics
B, Vol. 741, No. 1-2, 2006, pp. 215-235.
doi:10.1016/j.nuclphysb.2006.02.015
[12] G. Altarelli and F. feruglio, “Phenomenology of Neutrino
Masses and Mixings,” Acta Physica Polonica B, Vol. 30,
1999, pp. 3067-3088.
[13] E. Ma and D. Wegman, “Nonzero θ13 for Neutrino Mix-
ing in the Context of A4 Symmetry,” Physical Review
Letters, Vol. 107, No. 6, 2011, Article ID: 061803.
doi:10.1103/PhysRevLett.107.061803
[14] H. Ishimori and E. Ma, “New Simple A4 Neutrino Model
for Nonzero θ13 and Large δCP,” Physical Review D, Vol.
86, No. 4, 2012, Article ID: 045030.
doi:10.1103/PhysRevD.86.045030
[15] S. M. Boucenna, S. Morisi, M. Tortola and J. W. F. Valle,
“Bi-Large Neutrino Mixing and the Cabibbo Angle,” Phy-
sical Review D, Vol. 86, No. 5, 2012, Article ID: 051301.
doi:10.1103/PhysRevD.86.051301
[16] E. Ma, A. Natale and A. Rashed, “Scotogenic A4 Neutrino
Model for Nonzero θ13 and Large δCP,” International
Journal of Modern Physics A, Vol. 27, No. 23, 2012, Ar-
ticle ID: 1250134. doi:10.1142/S0217751X12501345
[17] D. Marzocca, S. T. Petcov, A. Romanino and M. Spinrath,
“Sizeable θ13 from the Charged Lepton Sector in SU(5),
(Tri-)Bimaximal Neutrino Mixing and Dirac CP Viola-
tion,” Journal of High Energy Physics, Vol. 2011, No. 9,
2011, in press. doi:10.1007/JHEP11(2011)009
[18] N. K. Francis and N. N. Singh, “Validity of Quasi-Degen-
erate Neutrino Mass Models and Their Predictions on
Baryogenesis,” Nuclear Physics B, Vol. 863, No. 1, 2012,
pp. 19-32. doi:10.1016/j.nuclphysb.2012.05.017
Copyright © 2013 SciRes. JMP