Advances in Pure Mathematics
Vol.05 No.11(2015), Article ID:59419,11 pages
10.4236/apm.2015.511061
Multistage Numerical Picard Iteration Methods for Nonlinear Volterra Integral Equations of the Second Kind
Lian Chen, Junsheng Duan*
School of Sciences, Shanghai Institute of Technology, Shanghai, China
Email: *duanjs@sit.edu.cn
Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/



Received 5 July 2015; accepted 4 September 2015; published 7 September 2015
ABSTRACT
Using the Picard iteration method and treating the involved integration by numerical quadrature formulas, we propose a numerical scheme for the second kind nonlinear Volterra integral equations. For enlarging the convergence region of the Picard iteration method, multistage algorithm is devised. We also introduce an algorithm for problems with some singularities at the limits of integration including fractional integral equations. Numerical tests verify the validity of the proposed schemes.
Keywords:
Volterra Integral Equation, Picard Iteration Method, Numerical Integration, Multistage Scheme

1. Introduction
The Volterra integral equations arise in many scientific and engineering fields such as the population dynamics, spread of epidemics, semi-conductor devices, vehicular traffic, the theory of optimal control, the kinetic theory of gases and economics [1] - [7] . The initial or boundary value problems for ordinary differential equations and some fractional differential equations can be equivalently expressed by the second-kind Volterra integral equation [6] - [9] .
In this work, we consider the general nonlinear Volterra integral equation of the second kind
(1)
where it permits weak singularity at the limits of integration.
The specific conditions under which a solution exists for the nonlinear Volterra integral equation are considered in [1] - [4] [7] . Many analytical and numerical methods have been proposed for solving this type of equations, such as the linearization and collocation method [10] - [14] , the trapezoidal numerical integration and implicit scheme method [15] , the implicit multistep collocation methods [16] , the reproducing kernel method [17] , the wavelet method [18] [19] , the Adomian decomposition method [6] [7] [20] and the methods by using function approximation [21] - [23] .
The Picard iteration method, or the successive approximations method, is a direct and convenient technique for the resolution of differential equations. This method solves any problem by finding successive approximations to the solution by starting with the zeroth approximation. The symbolic computation applied to the Picard iteration is considered in [24] [25] , and the Picard iteration can be used to generate the Taylor series solution for an ordinary differential equation [25] .
In this work, we concern on the numerical Picard iteration methods for nonlinear Volterra integral Equation (1). By using the proposed methods, we treat the involved integrals numerically and enlarge the effective region of convergence of the Picard iteration. The rest of the paper is organized as follows. In Section 2, the scheme in a single interval is considered, and the validity of the method is verified by some numerical tests. Basing on the scheme proposed in Section 2, we devise a multistage algorithm in Section 3 for enlarging the convergence region. In Section 4, an algorithm is introduced for problems with some singularity. To show the effectiveness of the proposed algorithms, we perform some numerical results.
2. Numerical Picard Iteration Method for Integral Equations
The Picard iteration scheme for the considered Equation (1) reads [7] [26]
(2)
(3)
The Picard iteration scheme has been applied in almost each textbook on differential equations to mainly prove the existence and uniqueness of solutions. It is direct and easily learned for numerical calculation.
Assume the recursion scheme is convergent for
. Denote

At
, (3) becomes
(4)
Treating the integral involved in (4) by numerical quadrature formulas, we have the numerical Picard iteration scheme for (1) over 
(5)
(6)
where
and
are the corresponding weights. Considering the compound trapezoidal formula in (6), the weights are

Numerical results are given to validate the proposed scheme. Let us start with an example in which the inte- grand
is independent with t.
Example 1 Consider the initial value problem (IVP) for the nonlinear differential equation

This IVP has the exact solution

The equivalent integral equation of the IVP is
Denote 

The relative errors 

numerical integration are needed. For each fixed N, iterations stop when


Next we give an example with t-dependent integrand.
Example 2 Consider the pendulum equation

The exact solution can be expressed in terms of the Jacobi elliptic function
Integrating the differential equation in (7) yields
Take


Figure 1. Example 1 is simulated by numerical scheme (5), (6) with discretization parameter N = 20. (a) The numerical solution 




Figure 2. Example 1 is simulated by (5), (6) with various discretization parameter N. (a) Dependence of the error



Figure 3. Example 2 is simulated by numerical scheme (5), (6) with N = 20. (a) The numerical solution 


the results of the first 5 iterations and the errors at T for each iteration. It confirms the validity of the scheme (5), (6) for equations with general integrand f.
What’s different from Example 1 is that, at T, the results of the second and the third iterations are even worse than the first one. However, it can be noticed that, in the interval closer to t = 0, for example
3. Multistage Scheme
It’s well-known that the convergence of the Picard iteration is constrained in some interval. Then how can we get the numerical solution to the integral Equation (1) when t is outside the interval of convergence? We will take advantage of the multistage method and design a scheme by which the considered problem can be solved interval by interval. For example, the Equation (1) is considered on



Denote the time interval considered for (1) by

where





Suppose the equation has been solved on






Now we consider the solution on

we have for

the right hand side of which will be analyzed below.
・ An approximation 

・ The second part, with the approximations of 

where the corresponding weights for numerical integration on 

・ 
Denoting

(9) leads to a new equation, which is similar to the considered problem (1),
namely,

Using (5), (6) over
We conclude the previous analysis as an algorithm.
Algorithm 1 Choose the algorithm’s parameters: number of subintervals


Step 1. For
- the uniformly distributed nodes and corresponding weights 

- the weights 


Step 2. For k = 1, solve (12). Note that the first term of



Step 3. Recursively solve (12) for 
- Calculate 

- The initial value of iteration:
- For

Here, we perform a numerical test to examine the effectiveness of Algorithm 1 and compare it with the scheme in single interval (2).
Example 3 Consider the Lane-Emden equation
The exact solution is
The equivalent integral form of the Lane?Emden equation is [20]
First, taking T = 4, 
Consider the underlying problem for larger T by Algorithm 1. The time interval 





where 


Figure 4. Example 3 is simulated by numerical scheme (5), (6) with N = 20. (a) The numerical solution φ of the first 5 iterations for integration time

Table 1. The error 
In fact, from the errors reported in the table, the convergence order 

It’s an interesting phenomenon observed from Table 1 that almost the same results are obtained for same NK. For example, when NK = 120, the errors are all
4. Problem with Singular Integrand
In recent years, the fractional differential or integral equations are much involved. In fact, fractional integral is a class of integration with weak singular kernel. So many fractional differential and integral equations can be equivalently expressed by the singular Volterra integral equation of the second kind. Let us consider such an integral equation with some singularity.
Example 4 Consider the singular Volterra integral equation [14]
The exact solution is


A simple idea is to avoid the value of the integrand at s = t in the numerical integration, so an alternative is to

Figure 5. Example 3 is simulated by Algorithm 1. (a) Dependence of the error 


integrate with compound rectangular formula. The only things we need to do are changing the nodes of numerical integration and generating approximations for the values of 
nodes 
For



Denote

in which
Thus, (12) becomes

We present the following algorithm.
Algorithm 2 Choose the algorithm’s parameters: number of subintervals


Step 1. For
- the nodes 

- the integral nodes and weights 

- the weights 


Step 2. Solve (16) for k = 1. As in Algorithm 1, since

- For


- For

where
Step 3. Recursively solve (16) for 
- For

- For

where
Now, we come back to Example 4. Taking 



Remark 1. Algorithm 2 is devised not especially for singular problems. It’s also valid for regular problems. For instance, we recalculate Example 1 with K = 2 and N = 5, 10, 20, 40, 80, 160. Errors and convergence rates respect to N are reported in Table 2, from which we can find the order is
5. Conclusions
In this work, Picard iteration methods with numerical integration are devised for the second kind nonlinear Volterra integral equations. The Picard iteration method solves the considered nonlinear equation explicitly, while the multistage scheme solves it interval by interval and enlarges the convergence region of the Picard iteration method. Numerical results validate the proposed schemes and algorithms and reveal that the schemes are of order 

Figure 6. Example 4 is simulated by Algorithm 2. (a) Dependence of the error 

Table 2. The error 
What should be noticed is that the errors reported in the numerical results decrease exponentially respect to times of iteration n (for example, through simple calculation, we can observe from Figure 3(b) and Figure 4(b) that the convergence rates are about 

Acknowledgements
This work was supported by the Natural Science Foundation of Shanghai (No. 14ZR1440800) and the Innovation Program of the Shanghai Municipal Education Commission (No. 14ZZ161).
Cite this paper
Lian Chen,Junsheng Duan, (2015) Multistage Numerical Picard Iteration Methods for Nonlinear Volterra Integral Equations of the Second Kind. Advances in Pure Mathematics,05,672-682. doi: 10.4236/apm.2015.511061
References
- 1. Davis, H.T. (1962) Introduction to Nonlinear Differential and Integral Equations. Dover, Publications, New York.
- 2. Jerri, A. (1999) Introduction to Integral Equations with Applications. Wiley, New York.
- 3. Linz, P. (1985) Analytical and Numerical Methods for Volterra Equations. SIAM, Philadelphia.
http://dx.doi.org/10.1137/1.9781611970852 - 4. Miller, R.K. (1967) Nonlinear Volterra Integral Equations. W. A. Benjamin, Menlo Park.
- 5. Wazwaz, A.M. (1997) A First Course in Integral Equations. World Scientific, Singapore City.
http://dx.doi.org/10.1142/3444 - 6. Wazwaz, A.M. (2009) Partial Differential Equations and Solitary Waves Theory. Higher Education, Beijing, and Springer, Berlin.
http://dx.doi.org/10.1007/978-3-642-00251-9 - 7. Wazwaz, A.M. (2011) Linear and Nonlinear Integral Equations: Methods and Applications. Higher Education, Beijing, and Springer, Berlin.
http://dx.doi.org/10.1007/978-3-642-21449-3 - 8. Duan, J.S. and Rach, R. (2011) A New Modification of the Adomian Decomposition Method for Solving Boundary Value Problems for Higher Order Nonlinear Differential Equations. Applied Mathematics and Computation, 218, 4090-4118.
http://dx.doi.org/10.1016/j.amc.2011.09.037 - 9. Daftardar-Gejji, V. and Jafari, H. (2006) An Iterative Method for Solving Nonlinear Functional Equations. Journal of Mathematical Analysis and Application, 316, 753-763.
http://dx.doi.org/10.1016/j.jmaa.2005.05.009 - 10. Maleknejad, K. and Najafi, E. (2011) Numerical Solution of Nonlinear Volterra Integral Equations Using the Idea of Quasilinearization. Communications in Nonlinear Science and Numerical Simulation, 16, 93-100.
http://dx.doi.org/10.1016/j.cnsns.2010.04.002 - 11. Brunner, H. (2004) Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511543234 - 12. Brunner, H., Pedas, A. and Vainikko, G. (2001) A Spline Collocation Method for Linear Volterra Integro-Differential Equations with Weakly Singular Kernels. BIT Numerical Mathematics, 41, 891-900.
http://dx.doi.org/10.1023/A:1021920724315 - 13. Brunner, H., Pedas, A. and Vainikko, G. (2001) Piecewise Polynomial Collocation Method for Linear Volterra Integro-Differential Equations with Weakly Singular Kernels. SIAM Journal on Numerical Analysis, 39, 957-982.
http://dx.doi.org/10.1137/S0036142900376560 - 14. Te Riele, H.J.J. (1982) Collocation Methods for Weakly Singular Second-Kind Volterra Integral Equations with Non-Smooth Solution. IMA Journal of Numerical Analysis, 2, 437-449.
http://dx.doi.org/10.1093/imanum/2.4.437 - 15. Atkinson, K.E., Han, W. and Stewart, D. (2009) Numerical Solution of Ordinary Differential Equations. John Wiley & Sons, Hoboken.
http://dx.doi.org/10.1002/9781118164495 - 16. Fazeli, S., Hojjati, G. and Shahmorad, S. (2012) Super Implicit Multistep Collocation Methods for Nonlinear Volterra Integral Equations. Mathematical and Computer Modelling, 55, 590-607.
http://dx.doi.org/10.1016/j.mcm.2011.08.034 - 17. Ketabchi, R., Mokhtari, R. and Babolian, E. (2015) Some Error Estimates for Solving Volterra Integral Equations by Using the Reproducing Kernel Method. Journal of Computational and Applied Mathematics, 273, 245-250.
http://dx.doi.org/10.1016/j.cam.2014.06.016 - 18. Saberi-Nadjafi, J., Mehrabinezhad, M. and Akbari, H. (2012) Solving Volterra Integral Equations of the Second Kind by Wavelet-Galerkin Scheme. Computers & Mathematics with Applications, 63, 1536-1547.
http://dx.doi.org/10.1016/j.camwa.2012.03.043 - 19. Yousefi, S.A. (2006) Numerical Solution of Abel’s Integral Equation by Using Legendre Wavelets. Applied Mathematics and Computation, 175, 574-580.
http://dx.doi.org/10.1016/j.amc.2005.07.032 - 20. Wazwaz, A.M., Rach, R. and Duan J.S. (2013) Adomian Decomposition Method for Solving the Volterra Integral Form of the Lane-Emden Equations with Initial Values and Boundary Conditions. Applied Mathematics and Computation, 219, 5004-5019.
http://dx.doi.org/10.1016/j.amc.2012.11.012 - 21. Costarelli, D. and Spigler, R. (2013) Solving Volterra Integral Equations of the 2nd Kind by Sigmoidal Functions Approximations. Journal of Integral Equations and Applications, 25, 193-222.
http://dx.doi.org/10.1216/JIE-2013-25-2-193 - 22. Costarelli, D. and Spigler, R. (2014) A Collocation Method for Solving Nonlinear Volterra Integro-Differential Equations of the Neutral Type by Sigmoidal Functions. Journal of Integral Equations and Applications, 26, 15-52.
http://dx.doi.org/10.1216/JIE-2014-26-1-15 - 23. Maleknejad, K., Hashemizadeh, E. and Ezzati, R. (2011) A New Approach to the Numerical Solution of Volterra Integral Equations by Using Bernstein’s Approximation. Communications in Nonlinear Science and Numerical Simulation, 16, 647-655.
http://dx.doi.org/10.1016/j.cnsns.2010.05.006 - 24. Mathews, J. (1989) Symbolic Computational Algebra Applied to Picard Iteration. Mathematics and Computer Education, 23, 117-122.
- 25. Parker, G.E. and Sochacki, J.S. (1996) Implementing the Picard Iteration. Neural, Parallel and Scientific Computations, 4, 97-112.
- 26. Bailey, P.B., Shampine, L.F. and Waltman, P.E. (1968) Nonlinear Two Point Boundary Value Problems. Academic, New York/London.
NOTES
*Corresponding author.




























