L. L. JIA 33

Foundation of China (Grant No. 11226130 and No.

11261013).

REFERENCES

[1] R. Bate, D. Mueller and J. White, “Fundamentals of As-

trodynamics,” Dover Publications, New York, 1971.

[2] S. C. Bell, “A numerical Solution of the Relativistic Ke-

pler Problem,” Computers in Physics, Vol. 9, No. 3, 2001,

pp. 281-285. doi:10.1063/1.168530

[3] P. Amster, J. Haddad, R. Oterga and A. J. Urena, “Perio-

dic Motions in Forced Problems of Kepler Type,” Non-

linear Differential Equations and Applications, Vol. 18,

No. 6, 2011, pp. 649-657. doi:10.1007/s00030-011-0111-8

[4] A. Fonda, R. Toader, and P. J. Torres, “Periodic Motions

in a Gravitational Central Field with a Rotating External

Force,” Celestial Mechanics and Dynamical Astronomy,

Vol. 113, No. 3, 2012, pp. 335-342.

doi:10.1007/s10569-012-9428-9

[5] X. GongOu, X. MingJie and Y. YaTian, “Kepler Problem

in Hamiltonian Formulation Discussed from Topological

Viewpoint,” Chinese Physics Letters, Vol. 22, No. 7,

2005, pp. 1573-1575. doi:10.1088/0256-307X/22/7/004

[6] K. Meyer and G. Hall, “Introduction to Hamiltonian Dy-

namical Systems and the N-Body Problem,” Springer,

New York, 1992.

[7] R. G. Cawley, “Motion of a Charged Light Like Particle

in an External Field,” Journal of Mathematical Physics,

Vol. 380, No. 14, 1967, pp. 2092-2096.

[8] T. E. Phipps, “Mercury’s Precession according to Special

Relativity,” American Journal of physics, Vol. 54, No. 3,

1986, pp. 245-247.

[9] C. Sigismondi, “Astrometry and Relativity,” Nuovo Ci-

mento B Serie, Vol. 120, No. 10, 2005, pp. 1169-1180.

[10] N. Jun, “Unification of General Relativity with Quantum

Field Theory,” Chinese Physics Letters, Vol. 28, No. 11,

2011, p. 110401. doi:10.1088/0256-307X/28/11/110401

[11] F. JianHui, “Study of the Lie Symmetries of a Relativistic

Variable Mass System,” Chinese Physics, Vol. 11, No. 4,

2002, pp. 313-318. doi:10.1088/1009-1963/11/4/301

[12] F. J. Hui and Z. Song-Qing, “Noether’s Theorem of a

Rotational Relativistic Variable Mass System,” Chinese

Physics, Vol. 11, No. 5, 2002, pp. 445-449.

doi:10.1088/1009-1963/11/5/307

[13] O. Coskun, “The Solutions of the Classical Relativistic

Two-Body Equation,” Turkish Journal of Physics, Vol.

22, No. 2, 2002, pp. 107-114.

[14] A. Schild, “Electromagnetic Two-Body Problem,” Physi-

cal Review, Vol. 131, No. 6, 1963, pp. 2762-2766.

doi:10.1103/PhysRev.131.2762

[15] C. M. Andersen and H. C. Baeyer, “Circular Orbits in

Classical Relativistic Two-Body Systems,” Annals of

Physics, Vol. 60, No. 1, 1970, pp. 67-84.

doi:10.1016/0003-4916(70)90482-3

[16] P. Cordero and G. C. Ghirardi, “Dynamics for Classical

Relativistic Particles: Circular Orbit Solutions and the

Nonrelativistic Limit,” Journal of Mathematical Physics,

Vol. 14, No. 7, 1973, pp. 815-822.

doi: 10.1063/1.1666401

[17] T. J. Lemmon and A. R. Mondragon, “Alternative Deri-

vation of the Relativistic Contribution to Perihelia Pre-

cession,” American Journal of Physics, Vol. 77, No. 10,

2009, pp. 890-893. doi:10.1119/1.3159611

[18] J. M. Potgieter, “An Exact Solution for the Horizontal

Deflection of a Falling Object,” American Journal of

Physics, Vol. 51, No. 3, 1983, pp. 257-258.

doi:10.1119/1.13275

[19] Y. S. Huang and C. L. Lin, “A Systematic Method to

Determine the Lagrangian Directly from the Equations of

Motion,” American Journal of Physics, Vol. 70, No. 7,

2002, pp. 741-743. doi:10.1119/1.1475331

[20] B. Coleman, “Special Relativity Dynamics without a

Priori Momentum Conservation,” European Journal of

Physics, Vol. 26, No. 4, 2005, pp. 647-650.

doi:10.1088/0143-0807/26/4/010

[21] P. Smith and R. C. Smith, “Mechanics,” John Wiley &

Sons Ltd., Chichester, 1990.

[22] P. J. Torres, A. J. Urena and M. Zamora, “Periodic and

Quasi-Periodic Motions of a Relativistic Particle under a

Central Force Field,” Bulletin London Mathematical

Society, 2012, pp. 1-13. doi: 10.1112/blms/bds076

[23] Q. Liu and D. Qian, “Construction of Modulated Ampli-

tude Waves via Averaging in Collisionally Inhomogene-

ous Bose-Einstein Condensates,” Journal of Nonlinear

Mathematical Physics, Vol. 19, No. 2, 2012, Article ID:

1250017. doi:10.1142/S1402925112500179

[24] Q. Liu, and D. Qian, “Modulated Amplitude Waves with

Nonzero Phases in Bose-Einstein Condensates,” Journal

of Mathematical Physics, Vol. 52, No. 8, 2011, Article ID:

082702. doi:10.1063/1.3623415

[25] L. Jia, L. Sun and J. Li, “Modulational Instability in

Nonlinear Optics,” Journal of Jiangxi Normal University

(Natural Science Edition), Vol. 14, No. 3, 2012, pp. 271-

275.

[26] J. A. Sanders, F. Verhulst and J. Murdock, “Averaging

Methods in Nonlinear Dynamical Systems,” Springer,

New York, 2007.

Copyright © 2013 SciRes. IJAA