R. REZAEI ET AL. 113

Furthermore, THDs of 70 dB was given for 200 mV

amplitude and 500 Hz input frequency sampled at 10

KHz. In spite of the ULV, excellent supply rejections of

71 dB at 5 KHz was obtained. Also, a reasonable CM

rejection ratio of 81 dB at same frequency was achieved.

However, the smaller bulk transconductance and large

capacitance from the body to the substrate, limit the

bandwidth of the structures. Eventually, from the pro-

posed P-OTA, a low-power S/H circuit with sampling

frequency of 10 KS/s has been designed and simulated.

In addition, the preliminary simulation results demon-

strate the feasibility of the P-OTA for modern ULV and

low-power mixed-signal chips and SOCs.

REFERENCES

[1] S. Chatterjee, Y. Tsvidis and P. Kinget, “Ultra-Low Volt-

age Analog Integrated Circuits,” IEICE Transactions on

Electronics, Vol. 89, No. 6, 2006, pp. 673-680.

[2] S. Yan and E. Sanchez-Sinencio, “Low-Voltage Analog

Circuit Design Techniques: A Tutorial,” IEICE Transac-

tions on Fundamentals of Electronics, Communications

and Computer, Vol. 83, No. 2, 2000, pp. 179-196.

[3] J. Ramirez-Angulo, R. G. Carvajal and A. Torralba, “Low

Supply Voltage High Performance CMOS Current Mirror

with Low Input and Output Voltage Requirements,” IEEE

Transactions on Circuits and Systems II: Express Briefs,

Vol. 51, No. 3, 2004, pp. 124-129.

doi:10.1109/TCSII.2003.822429

[4] ITRS, “The International Technology Roadmap for Semi-

conductors,” 2008. http://public.itrs.net

[5] Y. Berg and O. Mirmotahari, “Ultra Low-Voltage CMOS

Current Mirrors,” Analog Integrated Circuits and Signal

Processing, Vol. 68, No. 2, 2011, pp. 83-89.

[6] A. Baschirotto, V. Chironi, G. Cocciolo, S. D’Amico, M.

De Matteis and P. Delizia, “Low Power Analog Design in

Scaled Technologies,” Topical Workshop on Electronics

for Particle Physics, Pairs, 21-25 September 2009, pp.

103-110.

[7] J. Pekarik, D. Greenberg, B. Jagannathan, R. Groves, J. R.

Jones, R. Singh, A. Chinthakindi, X. Wang, M. Breit-

wisch, D. Coolbaugh, P. Cottrell, J. Florkey, G. Freeman

and R. Krishnasamy, “RFCMOS Technology from 0.25

nm to 65 nm: The State of the Art,” Proceedings of the

IEEE Custom Integrated Circuits Conference, 3-6 Octo-

ber 2004, pp. 217-224.

[8] M. Trakimas and S. Sonkusale, “A 0.5 V Bulk-Input

OTA with Improved Common-Mode Feedback for Low-

Frequency Filtering Applications,” Analog Integrated

Circuits and Signal Processing, Vol. 59, No. 1, 2009, pp.

83-89. doi:10.1007/s10470-008-9236-z

[9] A. Guzinski, M. Bialko and J. C. Matheau, “Body-Driven

Differential Amplifier for Application in Continous-Time

Active-C Filter,” Proceedings of the European Confer-

ence on Circuit Theory and Design, June 1987, pp.

315-319.

[10] G. Raikos and S. Vlassis, “Low-Voltage Bulk-Driven

Input Stage with Improved Transconductance,” Interna-

tional Journal of Circuit Theory and Applications, Vol.

39, No. 3, 2011, pp. 327-339.

[11] J. M. Carrillo, G. Torelli and J. F. Duque-Carrillo,

“Transconductance Enhancement in Bulk-Driven Input

Stages and Its Applications,” Analog Integrated Circuits

and Signal Processing, Vol. 68, No. 2, 2011, pp. 207-217.

doi:10.1007/s10470-011-9603-z

[12] L. H. C. Ferreira, T. C. Pimenta and R. L. Moreno, “An

Ultra-Low-Voltage Ultra-Low-Power CMOS Miller OTA

with Rail-to-Rail Input/Output Swing,” IEEE Transac-

tions on Circuits and Systems II: Express Briefs, Vol. 54,

No. 10, 2007, pp. 843-847.

doi:10.1109/TCSII.2007.902216

[13] J. M. Carrillo, G. Torelli, R. Pérez-Aloe and J. F. Duque-

Carrillo, “1-V Rail-to-Rail CMOS Opamp with Improved

Bulk-Driven Input Stage,” IEEE Journal of Solid-State

Circuits, Vol. 42, No. 3, 2007, pp. 508-517.

[14] H. Khameh and H. Shamsi, “A Sub-1 V High-Gain

Two-Stage OTA Using Bulk-Driven and Positive Feed-

back Techniques,” 5th European Conference on Circuits

and Systems for Communications, Serbia, November

2010.

[15] Y. Tsividis, “Mixed Analog-Digital VLSI Devices and

Technology,” World Scientific Publishing, Singapore

City, 2002. doi:10.1142/9789812703842

[16] S. Chatterjee, Y. Tsvidis and P. Kinget, “0.5 V Analog

Circuit Techniques and Their Application to OTA and

Filter Design,” IEEE Journal of Solid State Circuits, Vol.

40, No. 12 , 2005, pp. 2373-2387.

doi:10.1109/JSSC.2005.856280

[17] C. Duan and M. Liu, “MOSFET Modeling for Analog IC

Simulation under Ultra-Deep Submicron Technologies,”

Micro-Electronics Technology, 2006, pp. 205-209.

[18] A. N. Mohieldin, “High Performance Continuous-Time

Filters for Information Transfer Systems,” Ph.D. Disser-

tation, Department of Electrical Engineering, Texas A&M

University, College Station, 2003.

[19] A. Ahmadpour, “A 0.4 V Bulk-Input Pseudo Amplifier in

90 nm CMOS Technology,” Proceeding of 13th IEEE

International Symposium on Design and Diagnostics of

Electronic Circuits and Systems, Vienna, 14-16 April

2010, pp. 301-304.

[20] M.-J. Chen, J.-S. Ho, T.-H. Huang, C.-H. Yang, Y.-N.

Jou and T. Wu, “Back-Gate Forward Bias Method for

Low-Voltage CMOS Digital Circuits,” IEEE Transac-

tions on Electron Devices, Vol. 43, No. 6, 1996, pp.

904-910. doi:10.1109/16.502122

[21] S. Narendra, J. Tschanz, J. Hofsheier, B. Bloechel, S.

Vangal, Y. Hoskote, S. Tang, D. Somasekhar, A. Kesha-

varzi, V. Erraguntla, G. Dermer, N. Borkar, S. Borkar and

V. De, “Ultra-Low Voltage Circuits and Processor in 180

nm to 90 nm Technologies with a Swapped-Body Biasing

Technique,” IEEE International Digest of Technical Pa-

pers. Solid-State Circuits Conference, Vol. 1, 2004, pp.

156-157.

[22] J. W. Tschanz, J. T. Kao, S. Narendra, R. Nair, D. Anto-

niadis and A. P. Chandrakasan, “Adaptive Body Bias for

Reducing Impacts of Die-to-Die and Within-Die Parame-

Copyright © 2013 SciRes. CS