X. CHEN ET AL.

Copyright © 2013 SciRes. OJAppS

REFERENCES

[1] N. Keshava and J. F. Mustard, “Spectral Unmixing,”

Signal Processing Magazine, IEEE, 2002. 19(1): p.

44-57. doi:10.1109/79.974727

[2] J. Nascimento and J. Dias, “Vertex Component Analysis:

A Fast Algorithm to Unmix Hyperspectral Data,” IEEE

Transactions on Geoscience and Remote Sensing, 2005.

43(4): p. 898-910. doi:10.1109/TGRS.2005.844293

[3] J. W. Boardman, F. A. Kruse and R. O. Green, “Mapping

Target Signatures via Partial Unmixing of AVIRIS Data,”

1995: Pasadena, CA.

[4] M. E. Winter, “N-FINDR: An Algorithm for Fast Auto-

nomous Spectral End-member Determination in Hyp e r-

spectral Data,” Proceedings of SPIE, 1999. p.

266-275. doi:10.1117/12.366289

[5] L. Sun, Y. Zhang and B. Guindon, “Improved Iterative

Error Analysis for Endmember Extraction from Hyper-

spectral Imagery,” Proceedings of SPIE,

2008. doi:10.1117/12.799232

[6] D. D. Lee and H. S. Seung, “Algorithms for Non-negative

Matrix Factorization,” Advances in Neural Information

Processing Systems, 2001: p. 556-562.

[7] V. P. Pauca, J. Piper and R. J. Plemmons, “Nonnegative

Matrix Factorization for Spectral Data Analysis,” Linear

Algebra and Its Applications, 2006. 416(1SI): p.

29-47. doi:10.1016/j.laa.2005.06.025

[8] A. Plaza, P. Martinez, R. Perez and J. Plaza, “Spa-

tial/spectral Endmember Extraction by Multidimensional

morphological Operations,” IEEE Transactions on Geos-

cience and Remote Sensing, 2002. 40(9): p. 2025-

2041. doi:10.1109/TGRS.2002.802494

[9] M. Zortea and A. Plaza, “Spatial Preprocessing for End-

member Extraction,” IEEE Transactions on Geoscience

and Remote Sensing, 2009. 47(8): p.

2679-2693. doi:10.1109/TGRS.2009.2014945

[10] B. Zhang, “Hyperspectral Data Mining Supported by

Temporal and Spatial Information,” PH.D. Thesis, Insti-

tute of Remote Sensing Applications, Chinese Academy

of Sciences, 2002.

[11] N. Dobigeon, J. Y. Tourneret and C. Chein-I,

“S emi -supervised Linear Spectral Unmixing Using a

Hierarchical Bayesian Model for Hyperspectral Imagery,”

IEEE Transactions on Signal Processing, 2008. 56(7): p.

2684-2695. doi:10.1109/TSP.2008.917851

[12] M. N. Schmidt, “Linearly Constrained Bayesian Matrix

Factorization for Blind Source Separation,” Advances in

Neural Information Processing Systems, 2009.22: p.

1624-1632.

[13] M. N. Schmidt, O. Winther and L. K. Hansen, “Bayesian

Non-negative Matrix Factorization,” Independent Com-

ponent Analysis and Signal Separation, 2009. p. 540-547.

[14] G. Casella and E. I. George, “Explaining The Gibbs

Sampler,” American Statistician, 1992. 46(3): p.

167-174. doi:10.1080/00031305.1992.10475878

[15] R. M. Neal, “Slice Sampling,” Annals of Statistics, 2003.

31(3): p. 705-767. doi:10.1214/aos/1056562461

[16] M. Arngren, M. N. Schmidt and J. Larsen, “Bayesian

Nonnegative Matrix Factorization with Volume Prior for

Unmixing of Hyperspectral Images,” Proceedings of the

2009 IEEE International Workshop on Machine Learning

for Signal Processing (MLSP 2009), 2009: p. 6 pp.-6

pp. doi:10.1109/MLSP.2009.5306262

[17] C. I. Chang and Q. Du, “Estimation of Number of Spec-

trally Distinct Signal Sources in Hyperspectral Imagery,”

IEEE Transactions on Geoscience and Remote Sensing,

2004. 42(3): p. 608-619. doi:10.1109/TGRS.2003.819189

[18] J. M. Bioucas-Dias and J. M. P. Nascimento, “Hyper-

spectral Subspace Identification,” IEEE Transactions on

Geoscience and Remote Sensing, 2008. 46(8): p.

2435-2445. doi:10.1109/TGRS.2008.918089