Magnetotactic Bacteria Optimization Algorithm

Copyright © 2012 SciRes. JSEA

The four functions have difference characteristics as

shown in Table1. We can see that MBOA converges

much faster tha n PSO, DE and GA.

4. Conclusions

In this paper, a new nature inspired computing method-

Magnetotactic Bacteria Optimization Algorithm is re-

searched. It adopts the principles of energy and moment

of magnetosomes in magnetotactic bacteria to produce

optimal solution for engineering problems. It has simple

procedure and is easy to implement. The experimental

results show that it is effective in solving optimization

problems and is competitive with the compared classical

algorithms PSO and DE. And it converges faster than

PSO, DE and GA. It shows competitive performance

with some cla ssic al a l gor ith ms, suc h as G A, DE, PSO. In

future, it needs to be analyzed in theory and improved its

performance for solving more complex problems.

5. Acknowledgemen t s

This work is supported by the National Natural Science

Foundation of China under Grant No.61075113, the Ex-

cellent Youth Foundation of Heilongjiang Province of

ChinaNo.JC201212 and the Fundamental Research

Funds for the Central U niversities No.HEUCFZ12 09.

REFERENCES

[1] L. N. De Castro, F. J. Von Zuben. “Learning and Opti-

mization Using the Clonal Selection Principle,” IEEE

Trans. on Evolutionary Computation, Vol.6,No.3,

pp.239–251, 2002. doi: 10.1109/TEVC.2002.1011539

[2] M. Dorigo, V. Manianiezzo, A. Colorni. “The Ant Sys-

tem: Optimization by a Colony of Cooperating Agents,”

IEEE Trans.Sys. Man and Cybernetics, Vol.26, No.1,pp.

1-13.

doi:10.1109/3477.484436

[3] R. E. Dunin-Borkowski, M. R. McCartney, R. B. Frankel,

D. A. Bazylinski, M. Posfai , P. R Buseck. “Magnetic Mi-

crostructure of Magnetotactic Bacteria by Electron Holo-

graphy,” Science, Vol. 282, 1998,

pp.1868-1870. doi:10.1126/science.282.5395.1868

[4] D. Karab oga, B. Akay. “A Comparative Study of Artifi-

cial Bee Colony Algorithm,” Applied Mathematics and

Computation, Vol 214, No.1,2009, pp.108–132.

doi: 10.1016/j.amc.2009.03.090

[5] J. Kennedy, R. Eberhart. Particle swarm optimization.

IEEE Int Conf on Neural Networks. Piscataway, NJ,

1995,pp.1942-1948. doi:10.1109/ICNN.1995.488968

[6] S. Müeller, J. Marchetto, S. Airaghi, P. Koumoutsakos.

“Optimization Based on Bacterial Chemotaxis,” IEEE

Trans on Evolutionary Computation, Vol.6, No.1 , 2002,

pp.16-29.

doi:10.1109/4235.985689

[7] A. P. Philipse, D. Maas. “Magnetic Colloids from Mag-

netotactic Bacteria: Chain Formation and Colloidal Sta-

bility,” Langmuir, Vol.18, 2002,pp.9977-9984.

doi:10.1021/la0205811

[8] D. Simon. “Biogeography-based Optimization,” IEEE

Trans on Evolutionary Computation, Vol. 12, 2008,

pp.702-713.doi:10.1109/TEVC.2008.919004

[9] Mo Hongwei, “Research on Magnetotactic Bacteria Op-

timization Algorithm,” The Fifth International Confe-

rence on Advanced Computational Intelli-

gence,Nanjing,Oct,2012,pp.417-422.

[10] M. H. N. Tayarani, T. Akbarzadeh. “Magnetic Op timiza-

tion Algorithms A New Synthesis,” in Proc. of IEEE

Congress on Evolutionary Computation. Hong Kong,

China, 1-6,June,2008,pp. 2659-2665.

doi:10.1109/CEC.2008.4631155

[11] M. Winklhofer, L. G. Abraçado, A. F. Davila, C. N.

Keim, H. G. Lins de Barros. P. “Magnetic Optimization

in A Multicellular Magnetotactic Organism,” Biophysical

Journal, Vol 92, 2007,pp. 661-670.

doi:10.1529/biophysj.106.093823

[12] V. Tereshko. “Reaction–diffusion Model of A Honeybee

Colony’s Foraging Behaviour,” in Parallel Problem

Solving from Nature VI, Lecture Notes in Computer

Science, Vol. 1917, Springer–Verlag, Berlin, 2000,pp.

807–816. doi:10.1007/3-540-45356-3_79