Stechkin-Marchaud Type Inequalities in Lpfor Linear
Combination of Bernstein-Durrmeyer Operators
Guo Feng1
1.School of Mathematics and Information Engineering,
Taizhou University,
Zhejiang,Taizhou 317000, China
e-mail : gfeng@tzc.edu.cn
Meiqin Ke2
2.Library, TaizhouUniversity,
Zhejiang,Taizhou 317000, China
e-mail :mqke@tzc.edu.cn
Abstract—In this paper, we use the equivalence relation between K-functional and modulus of smoothness, and give the
Stechkin-Marchaud-type inequalities forlinear combination of Bernstein-Durrmeyer operators . Moreover, we obtain the
inverse result of approximation for linear combination of Bernstein-Durrmeyer operators with2(;)
rfx
O
M
Z
. Meanwhile we
unify and extend some previous results.
Keywords- Bernstein-Durrmeyer operators; linear combination; K-functional;Stechkin-Marchaud-type inequalities;
modulus of smoothness
1. Introduction and Main Results
Let
>@
0,1 ,(1)
p
fL pddf
. The Bernstein-
Durrmeyer
operator
(;)( :
n
Dfxn`
set of naturals
)
is defined as
follows
1
,,
0
0
(;)( )(1)()(),
n
nnknk
k
Dfxpxnp tftdt
¦³
(1.1)
where

,()(1) .
nk nk
nk k
pxx x
which was first introduced and investigated by Derrieinnic[1]
in 1985. The Linear combination of Bernstein-Durrmeyer
operators given by
21
,
0
(;)() (;),
i
r
nri n
i
Ofx cnDfx
¦
(1.2)
where i
nand ()
i
cnsatisfy:
21
01 21
0
),)()1,
r
rn i
i
in nnnciicn
ddddd
¦
"
21
0
)(),
r
i
i
iiicnM
d
¦
21
0
)()(();)0,1, 2,, 21.
i
r
m
in
i
ivcnDtxxmr
 
¦
"
(1.3˅
Ditzian and Ivanov [2], Zhou [3], Guo and Li [4] studied
the Linear combination of Bernstein-Durrmeyer operators,
and obtained the characterization of approximation, the
relationship of differential and modulus of smoothness for
,
(;)
nr
Ofx
.
In this paper, we first establish Bernstein-type inequality
with parameter
O
for
,
(;)
nr
Ofx
. After that, we use the
equivalence relation between K-functional and modulus of
smoothness, and give the Stechkin-Marchaud type
inequalities in
>@
0,1
p
fLfor linear combination of
Bernstein-Durrmeyer operators. Moreover, we obtain the
inverse result of approximation for linear combination of
Bernstein-Durrmeyer operators with 2(;)
rfx
O
M
Z
. Meanwhile
we unify and extend [2-4] results.
First, we introduce some useful definitions and notations.
Definition1.1. Let
2
()(1 ),01,1.xx xp
MO
ddddf
The modulus of smoothness by
22
0
(; )sup,
rr
php
ht
ft f
OO
MM
Z
d
'
where
>@
222
0
()(1) (()),,0,1,
r
rk rh rh
r
h
k
r
fxfxkh xx
k
§·
' 
ªº
¨¸ ¬¼
©¹
¦
otherwise
() 0.
r
h
fx'
The K-functional by
^`
22 22(2)
( ;)inf,
rr rrr
ppp
gG
Kftfgtg
O
O
MM

where
>@ >@
^`
(21)2(2)
0,1 ,..,0,1.
rrr
ploc p
GggLgACg L
O
M

Project supported by the Zhejiang Provincial Natural Science Foundation
(No.LY12A01008) and the Cultivation Fund of Taizhou University.
Open Journal of Applied Sciences
Supplement2012 world Congress on Engineering and Technology
228 Cop
y
ri
g
ht © 2012 SciRes.
By [5,pp.10-11] , there exists
0M!
, such that
12 22 22 2
(; )(; )(; ).
rr rrrr
pp p
MK ftftMKft
OO O
MM M
Z
dd
We are now in a position to state our main results.
Theorem1.1. For
,,0 1,()()
n
fGrx x
OG M
dd `
1
,
n
one has the Steckin-Marchaud inequality
2
2(1) 1
,
1
(;())() .
rn
rr
npkr p
k
fnxMnO ff
O
O
M
ZG

d
¦
Theorem1.2. Let
,,0 2fGr r
D
dd`
.Then
1
2
12
,
()(())(; )().
r
nrn p
p
Of fOnxftOt
O
OD
M
GZ
 
Remark 1.3.For the inverse result, it isobvious that the
result of [2] is a special case of the Theorem 1.2 with
1,
O
the result of [3] is a special case of the Theorem 1.2
with
0, p
O
f
, and the result of [4] is a special case of
the Theorem 1.2 with
.p f
Throughout this paper,
M
denotes a positive constant
independentof and fwhich may be different in different
places.
I. AUXILIARY LEMMAS
To prove the theorems, we need also the following
Lemmas.
Lemma2.1. If 11
22
,.cd
Then

1111
,
0
() (1 )1.
cd
cd kk
nk nn
pt ttdtMn

 

d 
³
(2.1)
Proof. We notice [5, pp.164]

111
,
0(), 1,
k
nk n
pttdtMn
K
KK
d!
³

111
,
0
()(1)1,1.
k
nk n
pt tdtMn
[
[
[
d !
³
Using Holder inequalityˈwe have
1
,
0() (1 )
cd
nk
ptt tdt

³
11
22
11
22
,,
00
()()(1)
cd
nk nk
pttdtptt dt

d
³³

111
1.
cd
kk
nn
Mn 

d
Lemma2.2. If
0,0, 0.cd xtt!
Then


11
,
0
()1(1) .
ncd
cd
kk
nk nn
k
pxMx x



d 
¦
(2.2)
Proof. We notice [5, pp.164]

,1
0
(), ,
nll
n
nk k
k
px Mxl
d
¦
`

,1
0
()(1) ,.
n
n
nk nk
k
pxM x
]]
]

d 
¦
`
For
0, 0,cd
the result of (2.2) is obvious.
For 0, 0,cd!!
using Holder inequality, we have

11
,
0
() 1
ncd
kk
nk nn
k
px


¦
 
11
22
22
11
,,
00
() ()1
nn
cd
kk
nk nk
nn
kk
px px


§·§ ·
d
¨¸¨ ¸
©¹© ¹
¦¦

[2] 1
([2]1)
,1
0
()
c
c
nc
n
nk k
k
px
§·
d¨¸
©¹
¦

[2] 1
[2] 1
,1
0
()
d
d
nd
n
nk nk
k
px

§·
¨¸
©¹
¦

[2] 1[2] 1
([2 ] 1)([2] 1)
(1 )(1 ).
cd
cd
cdcd
MxxMx x

 
dd
For
0, 0,cd!
or
0, 0,cd !
the proof is similar.
Thus, this proof is complete.
Lemma2.3. For
>@
0,1 ,,01,()
pn
fL rx
OG
dd `
1
(), 2,
n
xnr
M
t
one has the Bernstein-type inequality
2(2)2(1 )
,
() .
rr rr
nr np
p
OMnxf
OO
MG
d


3URRI
)RU
1,p
LI
11
,1 ,
nnn
xE 
ªº
¬¼
2
() ,xn
[
[
M
d
0,
[
!
E\ simplecomputation, we have

2
2
(2)
,
00
(;)(1)(,)()
rn
r
ri
nink
ik
Dfxxx Qxnnpx
¦¦

1
,
0
(1) ()(),
i
k
nk
n
xn pufudu 
³
˄2.4˅
Cop
y
ri
g
ht © 2012 SciRes.229
with
(,)
i
Qxn
is a polynomial in
(1 )nx x
of degree
>@
(2) / 2ri
with non-constant bounded coefficients.
Therefore,

11
22
(,)(1 ),.
rr
i
in
QxnnMxxnx E
d 
Thus,
2
2
2(2) (2)
,
00
()( ;)()()
i
rn
rrr i
nnk
ik
DxfxMnn xpx
OO
MM

d
¦¦

1
,
0
(1) ()()
i
k
nk
n
xn pufudu 
³
. (2.5)
Note that [5, pp.129]

2
21
,
() (),
n
m
mm
k
nk n
E
x pxxdxMn
M

d
³
We can write
2
2
2(2) (2)
,
1( )00
( )()()
i
n
rn
rr ri
nnk
Eik
Df Mnnxpx
OO
MM

d¦¦

1
,
0
(1) ()()
i
k
nk
n
xn pufudu 
³
1
(2 )
,
0
0
() ()
n
r
nk
k
Mnpuf udu
O
d
¦³
(2 )
1.
r
Mn f
O
d
(2.6)
,I
11
0,1 ,1
c
nnn
xE 
ªº
¬¼
WKHQ
2
!
(2)! ,
r
n
nr n
1
21
,
0
,().
rr
nk n
npxdx
OO
M
f
³
%\simple calculation,
we have
2
(2 )!2,
()!
0
(;)()( 1)
nr
rn
nnrk
nr
k
Dfxp xn
¦

2
12
,
00
(1)() ,
r
jr
jnkj
j
pudu
u
¦
³
(2.7)
21
2(2)2(2)
2,
1( )0
0
() ()
c
n
nr
rr r
nnrk
Ek
DfMnpxdx
OO
M
d
¦³

21
2
,
0
0
(1) ()()
r
r
jnkj
j
npufudu
u
¦³

22
1
2(2 )2
,
0
00
() ()
rnr
rr
jnkj
jk
Mnpuf udu
O
d¦¦
³
2(2 )
1
.
r
Mn f
O
d
˄2.8˅
For
p f
, if n
xE, by(2.5) we can now write
2
2
2(2) (2)
1
()( ;)()
i
r
rr ri
n
i
xDfxMnfnx
OO
MM

f
d¦

1
,,
0
0
()( 1)()
ni
k
nk nk
n
k
px xnpudu

¦³
(2 )r
Mn f
O
f
d (2.9)
If c
n
xE, by (2.7), the proof is similar to that (2.9),
it is enough to show
2(2) (2)
()( ;).
rr r
n
xDf xMnf
OO
M
f
d
(2.10)
By (2.6), (2.8), (2.9), (2.100 applying Riesz-Thorin theorem,
we get
2(2)(2)2(1)
()().
rr rrr
nn
pp
p
DfMnf Mnxf
OOO
MG

dd
Combining (iii) of (1.3), we obtain
2(2)2(1 )
,()() .
rr rr
nrn p
p
Of Mnxf
OO
MG
d
Lemma 2.4. If
,,0 1,2fGrn r
O
dd!`
, Then
2 (2)2 (2)
,
() .
rr rr
nr pp
Of M f
OO
MM
d

(2.11)
Lemma 2.5. If ,,0 1,fGr
O
dd`Then
2(2)
,()
rr
nr p
Of
O
M
12( 1)
,
1
()().
n
rr
nkr
p
k
MnxOff
O
G

d
¦
Proof. By Lemma 2.3., Lemma2.4., note that
(2)
1, 0
r
r
O
,
we have
2(2)
,
()
rr r
nr p
nOf
O
M
2(2)
,,
(())
rrr
nr krp
nOOf
M
d
2(2)
,,
(())
rrr
nr krp
nOOff
M

2(2)
2,
()
rrr
kr p
MnOf
M
d
2( 1)
1,
()()).
r
nkr
p
MxOff
O
G

(2.12)
We write
,,
1
() )max() ).
qr kr
pkn
Of fOf f
dd
 
230 Cop
y
ri
g
ht © 2012 SciRes.
For ,() )
qr p
Of f, there exists
3,M
and
:1kkndd
,
such that ,,
() )() ).
qr kr
p
Of fMOf fd 
Therefore,
2(2)
2,
()
rrr
kr p
MnO f
M
2
2(2)
,1,
(() )
r
Mrr
kr r
np
OOff
O
M
d
2
2(2)
,1,
(())
r
Mrr
kr r
np
OOf
O
M
2( 1)
12 1,
()
r
kr p
MMO ff
O
G
d
22(1)(2)
2,
()
rr
kkr
p
MOf
O
G
2( 1)
12 ,
()
r
kqr p
MMOff
O
G
d
2( 1)
123 .
() .
r
kkr p
MMMO ff
O
G
d
˄˅
Note that
2( 1)2( 1)
() ()
rr
kn
xx
OO
GG

d

E\(2.12), (2.13, we have
2(2) 12(1)
,,
1
()()().
n
rr rr
nrnkr p
pk
Of MnxOff
OO
MG

d
¦
where 1123
.MM MMM
2. Proofs of Theorems
Proof of Theorem 1.
Proof. For
2,n!
WKHUHH[LVWV
,m`
VXFKWKDW 2,
nmnddand
2
,,
()min (),
n
mr kr
pp
kn
Of fOf f
dd
 
2
1
,,
()2() .
n
mr kr
pp
kn
Of fnOf f
dd
d 
¦
Therefore, using the definition of
22
(; )
rr
p
Kft
O
M
, and
Lemma 2.5., note that
2( 1)2( 1)
() ()
rr
mn
xx
OO
GG

d
ZHKDYH
22(1)
(; ())
rrr
np
Kfn x
O
O
M
G

2(1 )2(2)
,,
() ()
rrr r
mrn mr
pp
Of fnOf
OO
GM

d
2(1 )
,
1
()
m
rr
nkr
p
k
MnO ff
O
G


¦
1
,
1
() .
n
kr p
k
MnO ff
d
¦
By relationship of K-functional and modulus of smoothness,
we get
2
2(1)1
,
1
(;)() .
r
n
rr
npkr p
k
fnMnO ff
O
O
M
ZG

d
¦
This completes the proof of Theorem !.
Proof of Theorem2.
Proof. By

1
2
1
,
() (),
nr n
p
Of fMnx
O
G
d
Acording
to the definition of
22
(; ),
rr
Kft
O
M
we have
22 22(2)
,,
(; )()()
rr rrr
pnr nr
pp
KftfOftO f
O
O
M
M
d 
1
2122(2)
[(( ))()
rrr
nn
p
MnxtOf g
ODO
GM
d
2(2)
() ]
rr
np
Og
O
M
>
1
2
122(1)
(())()
rrr
nn
p
Mnxtnxfg
OD O
GG

d 
@
2(2)
)
rr
p
g
O
M

12
2
2(1 )
122(1)
()
(())(;)
r
rr
n
rrr
t
np
nx
MnxKfn
O
O
OD O
M
G
GM

d
By Berens-Lorens theorem, and relationship of K-functional
and modulus of smoothness, we have
2
(;) .
r
p
ft Mt
O
D
M
Z
d
This completes the proof of Theorem2.
REFERENCES
[1] M..M..Derrieinnic, “On Multivariate Approximation by
Bernstein-type Polynomials,” J. Approx. Theory, vol.45,
pp. 155-156, 1985.
[2] Z. Ditzian, K. G. Ivanov “ Bernstein-type operators and
their derivatives,” J Approx. Theory, vol.56, pp.72-90,
1989 .
[3] D.X.Zhou, “On smoothness characterized by Bernstein
type operators,” J. Approx Theory, vol.81, pp.303-315,
1995.
[4] S.S. GuoˈC.X.Li , “Approxition by Linear
Commbinations of Bernstein-Durrmeyer Operators,”
Cop
y
ri
g
ht © 2012 SciRes.231
Journal of Lanzhou University (Natural Sciences) , vol.
36(6), pp. 13-16, 2000.
[5] Z.Ditzian, V.Totik, “ Moduli of Smoothness,”Springer-
Verlag, New York, 1987.
[6] V. Wiekeren, weakptype inequalities for Kantorovich
polynomials and related operators. Indng Math., 1987,
90(1).111-120
232 Cop
y
ri
g
ht © 2012 SciRes.