Optics and Photonics Journal, 2012, 2, 332-337
http://dx.doi.org/10.4236/opj.2012.24041 Published Online December 2012 (http://www.SciRP.org/journal/opj)
Simple Method of the Formation of the Hamiltonian
Matrix for Some Schrödinger Equations Describing the
Molecules with Large Amplitude Motions
George А. Pitsevich, Alex E. Malevich
Belarusian State University, Мinsk, Belarus
Email: pitsevich@bsu.by
Received September 8, 2012; revised October 7, 2012; accepted October 18, 2012
ABSTRACT
A simple approach to the formation of a Hamiltonian matrix for some Schrödinger equations describing the molecules
with large amplitude motions has been proposed. The algorithm involving one or several variables has been concretely
defined for the basis functions represented by Fourier series and orthogonal polynomials, taking Hermitian polynomials
as an example.
Keywords: Schrödinger Equation; Large Amplitude Motions; Hamiltonian Matrix
1. Introduction
Algebraic approaches to solving of Schrödinger equa-
tions have several advantages compared to other methods.
Provided the basis functions used for expansion of the
wave functions and the potential energy of a system are
adequately selected, the Schrödinger equation takes the
matrix form, in the end its solution being reduced to the
derivation of eigenfunctions and eigenvalues for the
Hamiltonian matrix. When studying the molecules whose
variables are changing with a large amplitude, the Ham-
iltonian matrix derivation is a nontrivial problem. This
work presents an algorithm to form the Hamiltonian ma-
trix for some Schrödinger equations describing mole-
cules and molecular systems with several variables of
this type. Such equations may be illustrated by the fol-
lowing:

2
2
d
d
F
UE

(1)
  

22
22
,,
,,
,
st st
A
BU stst
st
Est
 



(2)
 
 
222
222
,,,, ,,
,, ,,,,
x
yzxyz xyz
Fxyz
U xyzxyzExyz

  






(3)
In all cases it is assumed that with a change in the vari-
ables the kinematic parameters remain invariable. This
may be attained by an adequate selection of a coordinate
system strongly related to the molecule, both in the case
of symmetric [1-4] and low-symmetry [5-9] molecules.
Equation (1), in particular, describes internal vibrations
in a molecule of methanol, taking the effective vibra-
tional constant as F [10-12]. In some cases an invariable
character of the molecular kinematic parameters for large
amplitude motions may be considered as a physically
valid approximation. Specifically, Equation (3) may be
used for the description of motion of a hydrogen atom in
the process of hydrogen bonding if we neglect motion of
the oxygen atoms, the amplitude of which is in fact con-
siderably smaller than that of H motion as a mass ratio of
these atoms is 1:16. This paper presents “quick” ap-
proaches to construct the Hamiltonian matrix for some
basis functions.
2. Using of Fourier Series
Since the use of Fourier series for solving of equations of
the form given in (1) is frequently described in the lit-
erature and in some works the formation algorithm for
the Hamiltonian matrix is given in detail, we begin our
analysis from Equation (2). Let the potential energy be
given in the form:


,i
,,
,e;,
ab ks lt
kl
kla b
Ustu ab
 
(4)
Then a wave function is derived as:
C
opyright © 2012 SciRes. OPJ
G. А. PITSEVICH, A. E. MALEVICH 333

i
,
,e
ns mt
nm
nm
st b


(5)
Substituting (4) and (5) into (2), we obtain:




i
22
,
,i
,,,
e
e0
ns mt
nm
nm
ab nks mlt
kl nm
nmkla b
nA mBEb
ub


 


(6)
Next we define coefficients for the exponential
. In the second term the following condition
must be fulfilled:
i
ensmt

;nk nk n n
ml ml mm

 

  (7)
Instead of (6), we have:


i
22
,i
,
,,,
e
e0
ns mt
nm
ab ns mt
nnmmnm
nmn nmma b
nA mBEb
ub






 



N
(8)
Then we construct the finite matrix with the dimen-
sions . This means that n and
m are varying within the limits from to c per unity.
From (8) we derive:

22
21 21;ccc c


i
22
,i
,
,,,
e
e0
ns mt
nm
ab
cns mt
nnmmnm
nmcnnm ma b
nA mBEb
ub






 



 (9)
Now we take (9) as a matrix equation of the form
ij jj j
H
bEb, where j
b—column vector that, ac-
cording to (5), gives the wave function corresponding to
the energy
j
E
. It is clear that a pair of the indices
,nm

numbers rows of the Hamiltonian matrix and a
pair of the indices
,nm
b
—its columns. Next, to derive
the Hamiltonian matrix from (9), first we have to fix an
order of the coefficients nm in the column vector of the
wave function defined by Equation (5). For example, if
, the transposed column vector may be of the form:
1c
1, 11,01,10,10,00,11,11,01,1
;;;;;;;;b bbbbbbbbb
 
(10)
Let us assume that in the same order from top to bot-
tom there is a change in the index pair
,nm

,ab
num-
bering rows of the Hamiltonian matrix. Then a matrix
element of H is numbered by two index pairs,

,,,nmnm. Considering that usually, for the
diagonal element
H c
;nnmm

we can write:

22
00
,,,nm nm
H
nAmB uE
 

(11)
and for nondiagional elements we can write:

,
,,,
if and
nnmm
nm nm
Hu
nna mmb





(12)

,,, 0
if or
nm nm
H
nna mmb



(13)
Numbering matrix elements of
H
by the ordinary
indices
,ij
2 each of which is varying from 1 to
, we should establish for each of them a one-
to-one correspondence to a pair of numbers by the prin-
ciple:
21c
,in
ii
m
;
,
jj
j
nm
3i. Specifically, in the
case given by (10) for
we have ; 33 1n 1m
;
and for 6j
we have 6; 6. Now an algo-
rithm for the formation of the matrix
0n1m
H
takes the fol-
lowing form:
22
00ii ii
H
nA mBuE


(14)
,
if and
ijij
ijnn mm
iji j
Hu
nnamm b




(15)
0if or
iji jij
Hnnamm

 b
(16)
Let us write the Hamiltonian matrix in the explicit
form with the use of (14 - 16) for . Besides, we
assume that the index order is determined by the relation
of (10), and
1c
1ab
. Then we have:
0, 11,01,1
00
0,10, 11,11,01, 1
00
0,11,11,0
00
1,01,10, 11,01,1
00
1,11,01, 10,10, 11,11,01, 1
00
1,1 1,00,11,1 1,0
00
1,0 1
0000
000
0000
00
000
000
uuu
ABu
uuuuu
Au
uuu
ABu
uuu uu
Bu
uuu uuuuu
u
uu uuu
Bu
uu








,1 0,1
00
1,11,01, 10,10, 1
00
1,1 1,00,100
00
000
0000 0
u
ABu
uuu uu
Au
uu u
0
0
0

A
Bu




Next we consider the case of three variables. Let the Schrödinger equation be of the form:
Copyright © 2012 SciRes. OPJ
G. А. PITSEVICH, A. E. MALEVICH
334
 
 
222
22
,, ,,,,
,, ,,,,
2
s
tr str str
ABC
st
U strstrEstr
 



r
(17)
Then we define an algorithm to form the Hamiltonian
matrix when using three-dimensional Fourier series. Let
the potential energy be given as:


,, i
,,, ,
,,e ;
,,
abc hs kt lr
hkl
hkl abc
Ustr u
abc N


(18)
A wave function takes the form:

i
,,
,, ens mt qr
nmq
nmq
str b



(19)
Substituting (18) and (19) into (17), we obtain:


 

i
222
,,
,, i
,,,,,,
e
e0
ns mt qr
nmq
nmq
abc nhsmktlqr
hkl nmq
nmqhklabc
nA mB qCEb
ub







(20)
Let us find coefficients for the exponential

i
ens mt qr

 .
The following condition must be fulfilled:
;
;
;
nhnhn n
mk mk m m
lqlql l

 

 

 
(21)
Instead of (20), we have:


i
222
,, i
,,
,,,,, ,
e
e
0
ns mt qr
nmq
abc nsmt qr
nnmmllnmq
nmqn nm ml labc
nA mB qCEb
ub








 



N
(22)
We construct the finite matrix with the dimensions
, i.e. n, m, and q are varying
within the limits from to d per unity. From Equa-
tion (22) we get:

33
21 21;ddd 
d


i
222
,, i
,,
,,,,, ,
e
e
0
ns mt qr
nmq
abc
dns mt lr
nnmmllnmq
nmqdnnmmllabc
nA mB qCEb
ub








 


 (23)
Now three indices
,,nml

number rows and three
indices
,,nml
1c
number columns of the Hamiltonian
matrix. To derive a Hamiltonian matrix from (23), we
again fix an order of the coefficients nmq in the column
vector for the wave function defined by (19). For exam-
ple, if , the transposed column vector may be of the
form:
b
1, 1, 11, 1,01, 1,11,0, 11,0,0
1,0,11,1, 11,1,01,1,10, 1, 10, 1,0
0, 1,10,0, 10,0,00,0,10,1, 10,1,00,1,1
1, 1, 11, 1,01, 1,11,0, 11,0,01,0,1
1,
;;;;;
;;;;;;
;;;; ;;
;;;;;;
bb bbbb
bb bbbb
bbbbbbb
bbbbbb
b
  

 
 
;
1, 11,1,01,1,1
;;bb
(24)
We assume that a change of three indices ,,nmq

,
numbering rows for the Hamiltonian matrix is in the
same order from top to bottom. Then a matrix ele-
ment of H is numbered by two pairs of three indices,

,, . Considering that, as previously, we
have , then for the diagonal elements
,,,nmq nmq
H
d
,,abc
q
;;mqnnm


we can write:

222
000
,,,,,nmq nmq
H
nAmBqCu
 E

(25)
And for nondiagonal elements we can write:

,,
,, ,,,
if ;and
nnmmq q
nmq nmq
Hu
nnammb qqc



 

(26)

,, ,,,0if
or or
nmq nmq
H
nna
mmb qqc





(27)
when numbering the matrix elements of H by the ordi-
nary indices
,ij each of which is varying from 1 to
3
21c
, we should establish for each of them a
one-to-one correspondence to three numbers by the prin-
ciple:
q,,
ii
inm
i

;
,,
jjj
j
nmq
3i
. Specifically,
in the case given by (24) for we have 31n
;
31m
; 31q
, and for we have 19
19j1n
;
19 1m
; 19 1q
. Now an algorithm to form the ma-
trix H takes the form:
222
000
ii iii
H
nA mB qCuE


(28)
,,if ;
and
iji jij
ijnn mm qqij
ij ij
H
unn
mm bqq c

 a


  (29)
0if
or or
iji j
ij ij
Hnna
mmb qqc




(30)
3. Using of Orthogonal Polynomials
Let us consider the Schrödinger equation with one vari-
able (31), taking orthogonal Hermitian polynomials n
H
as an example.

2
2
d
d
x
RUxxE
x
x
(31)
Let the potential energy be given as:
 
0
m
kk
k
UxuH x
(32)
Copyright © 2012 SciRes. OPJ
G. А. PITSEVICH, A. E. MALEVICH 335
And we are looking for a wave function of the form:
 
2
1
2
0
e
x
nn
n
xbHx

(33)
We substitute (32) and (33) into (31):

 

 
0
2
0
2
0
00
1
2
1
4
0
nn
n
nn
n
nn
n
m
kn nk
nk
RnEbH x
Rnnb Hx
RbH x
ubHx Hx




(34)
Using the orthogonality of Hermitian polynomials, we
can write:
 
 
2
,,
,2
1
2
,,
;
ed
nk
nk lnkl
lnk
x
lnknk l
HxHxc Hx
cHxHxH xx


(35)
As a result, Equation (34) takes the form:
 
 
,,
2
00
2
000,2
11
2
0
4lnkk nl
nn nn
nn
mnk
nn
nnklnk
cubH
RnEbH xRnnbHx
RbH xx




 



(36)
Taking the coefficients for n
H
, we construct a matrix
with the dimensions
1h1
,
h. In the second term
of Equation (36) we must assume
22nnnn

 
in the third term we assume ,
and in the fourth –. Instead of (36), we get:
22nnnn


ln

 
 
2
2
0
1
2
21
0
4
nn
nn
h
nnnnkn nk
nk
RnEbHx
Rnnb H x
RbHx cHxbu


 


 


(37)
As previously, the index numbers rows of the
Hamiltonian matrix, whereas the index n numbers its
columns. Let an order of indices in the column vector of
the wave function be so that a form of the transposed
vector is given by:
n
01
;; h
bbbb
(38)
In a similar way we will number rows of the Hamilto-
nian matrix from top to bottom from 0 to h per unity.
According to Equation (37), at the first stage we can fill
the Hamiltonian matrix with the elements existing for
representation of the potential energy in the form
by the following principle:
nnk k
cu
nnnnk k
k
H
cu

(39)
Summation in (39) is over all the existing indices k for
the specified index pair
,nn
. Next, to every diagonal
element nn
H
we add
1
2
nR
and to every element
of the diagonal, parallel to the main diagonal and posi-
tioned above it as a next nearest
,2nn
H
, we add
21nn

 R
. And in the case of a similar diagonal
positioned as a next nearest below
we add
,2nn
H
1
4R. So, diagonal elements take the form:
1
2
nnnnkk
k
H
nRcu
 
 
(40)
Nondiagonal elements are of the form:
2,
21
nnn nkk
k2,
H
nnRc
 


 u
(41)
2,
1
4
nnn nkk
k2,
H
Rcu
 
 
(42)
The remaining nondiagonal elements are as (39). Us-
ing the ordinary indices varying from 1 to
,ij 1h
,
we can rewrite this algorithm as:
1, 1,
1
2
iiiik k
k
H
iRcu

 
(43)
,21, 1,
1
iiiik k
k
H
iiR cu
 
(44)
,2 1,3,
1
4
iiiikk
k
H
Rc u

 
(45)
1, 1,ijijk k
k
H
cu

(46)
Finally, we consider Equation (3), trying to construct
the Hamiltonian matrix with the use of Hermitian poly-
nomials as basis functions. Let the potential energy be
represented as:
 
,,
,, 0
,, ;
,,
abc
klm klm
klm
Uxyzu HxH yHz
abc N
(47)
A wave function is derived as follows:
 
2
2
0
2222
,,e ;
r
nts nts
nts
xyzb HxHyHz
rxyz


(48)
Substituting (47) and (48) into (3), we obtain:
Copyright © 2012 SciRes. OPJ
G. А. PITSEVICH, A. E. MALEVICH
336

 
 
 
 
 
 
 
0
2
0
2
0
2
0
2
0
2
0
2
0
3
2
(1)
1
1
4
4
4
nts nts
nts
nts nts
nts
nts nts
nts
nts nts
nts
nts nts
nts
nts nts
nts
nts nts
nts
fnk ht
RntsEbHxHyHz
Rn nbHxHyHz
Rt tbHx Hy Hz
Rs sbHx Hy Hz
RbHxH yH z
RbHxHyH z
RbHxH yHz
cc
 



 
00
0
abc
lrsmntsklm fhr
nts klmfhr
cbuHxHyHz


(49)
Suppose that we need to construct a matrix with the
dimensions . We determine coeffi-

3
1dd

3
1
cients for the factor
 
:
nts
H
xH yH z
 

 
 
 

 
 
2,,
,2,
,, 2
2,,
,2,
,,2
3
2
21
21
21)
4
4
4
nts nts
ntsn ts
nts nts
nts nts
ntsn ts
nts nts
nt s
Rnt sEb H xHyHz
RnnbHxH yH z
RttbHxH yHz
RssbH xH yH z
RbHxHyHz
RbHxHyHz
RbH
 
 
  
 
 
  


 



 


 
 
0
0
nts
d
nnk ttlssm ntsklmnts
nts klm
xH yHz
cccbuHxHyHz
 



(50)
This expression may be rewritten as follows:


 

2, ,,2,
,,22,,, 2,
,, 2
0
3
2
21 21
21 44
0
4
nts n
nts nts
ntsntsnts
d
ntsnnkt tls smntsklm
nts klm
Rn tsEbHx
Rnn bRttb
RR
Rssbbb
Rbcccbu
 
 

  



 
 
 

 
 

(51)
We fix an order of the coefficients nts in the column
vector of the wave function defined by Equation (48).
For example, if , the transposed column vector
may be of the form:
b
2d
0,0,0 0,0,10,0,2 0,1,0 0,1,10,1,2 0,2,0 0,2,1
0,2,21,0,01,0,11,0,2 1,1,01,1,11,1,21,2,0 1,2,1 1,2,2
2,0,0 2,0,12,0,2 2,1,0 2,1,12,1,2 2,2,0 2,2,12,2,2
;;;;;;;;
;;;;;;;;;
;; ;;;; ;;
bbbbbbbbb
bbbbbbbbbb
bbbbbbbbb
;
(52)
Let us assume that a change in three indices
,,nts

numbering rows of the Hamiltonian matrix is in the same
order from top to bottom. The matrix element
H
is
numbered by a pair of three indices

,,, ,,nts nts. As
earlier, first we can fill the Hamiltonian matrix with the
existing elements representing the potential energy of the
form by the following principle:
H 
n nkttls smklm
cccu


,,, ,,n nkt tls smklm
nts ntskl m
H
cccu


(53)
Summation in Equation (53) is performed over all the
existing triples
,,klm for the pair of the specified
triples
,,nts

and
,,nts. For the main diagonal

,, ,,,nts nts
H
  we must add
3
2
nts R


. To the
nondiagonal elements of the form
 
,, ,2,,;
nts nts
H 

,, ,2,,nts nts
H

, and we must add

,, , ,,2nts nts
H 
21Rn n

;

 
21Rt t


, and
2Rs s1

. Finally, to the diagonal elements of
the form

,, ,nts n
H
 
2,,;
ts

H
 

,, ,,2,nts nts
H 
, and

,, , ,,2nts nts
 
we must add 1R. Thus, we have:
4

,, ,,,
3
2
nts nts
nnk ttlssm klm
klm
H
nts R
cccu
 



(54)
 

,2,
,, ,2,,
21
nnk ttl ssm klm
nts ntskl m
H
cccu
Rn n
 
 


(55)
 

,2,
,, ,,2,
21
nnkt tlssmklm
nts ntskl m
H
cc cu
Rt t
 
 

 
(56)


,2,
,, ,,,2
21
nnkttls smklm
nts ntsklm
H
cccu
Rs s
 
 

 
(57)
 
2, ,
,, ,2,,
1
4
nn kttlssmklm
nts ntsklm
H
cccu

 

R
(58)
 
,2,
,, ,,2,
1
4
nnkt tlssmklm
nts ntsklm
H
cc cuR
 
 

(59)
 
,, , ,,2
1
4
nnk ttl ssm klm
nts ntsklm
H
cccu R

 

(60)
In other cases, we have (53). Now numbering the ma-
trix elements of H by the ordinary indices
,ij each of
Copyright © 2012 SciRes. OPJ
G. А. PITSEVICH, A. E. MALEVICH
Copyright © 2012 SciRes. OPJ
337
which is varying from 1 to , we have to estab-
lish for them a one-to-one correspondence to three num-
bers according to the principle:
3
21d

,,
ii i
ints

;
,,
jjj
j
nts
5i
17j
. Specifically, in the case given by (52)
for we have; ; , and for
we have 17 ; 17
50n
1t51t
2
51s
n
; 17 . Then an al-
gorithm to construct the matrix under condition of
(52) takes the following form:
1s
ij
H
iii i
Hnt


,18 ,
19
;
ii
iin n
klm
Hc
i

,6
13
;10 1
ii
ii nnk
klm
Hc
i


,2
1, 4, 7,10,13
ii
ii nnk
klm
Hc
i

3
2
i
s

18 ,ii
k ttl s

6
, ,
2;1921
i i
t tlss
c
 
2
,
16,19, 22
iii i
ttls s
cc
 
;
ii
ssm klm
cu


21;
i
nn


21;tt



21;ss

ii ii
nnk ttl
klm
cc
 
m klmi
cu
klm
uR
25;
klm
uR
R
ii
s

;
m
c
,
,
m
(61)
c
 R
(62)
(63)
,
(64)
18 ,ii
nkttl
c

18, ,
ii
iin
klm
Hc

1
4
klm
u;1
9;Ri
i
s
i
sm
c
(65)
6
, ,
2;1921
i ii
kttls6,
13
;101
ii
ii nn
klm
1
4
;
i
smklm ;
H
cc c
 
u
R
i


(66)
2
16,19,22
iiii
ttl ss2,
1, 4, 7,10,13
ii
i innk
klm
1
4
,,25;
m klm;
H
ccc
 
ij ij
ttl ssm
uR
i

,ij
ij nnk
klm
(67)
klm
H
ccc

u
(68)
4. Conclusion
In this way we have derived analytical expressions for
elements of the Hamiltonian matrix describing the mole-
cules characterized by motions with a large amplitude.
The cases when the wave functions and potential energy
are represented by Fourier series and orthogonal poly-
nomials have been considered in detail taking Hermitian
polynomials as an example. Some specific types of
Schrödinger equations with a single variable or several
variables have been treated.
REFERENCES
[1] J. T. Hougen, “A Group-Theoretical Treatment of Elec-
tronic, Vibrational, Torsional and Rotational Motions in
the Dimethylacetylene Molecule,” Canadian Journal of
Physics, Vol. 42, No. 10, 1964, pp. 1920-1937.
doi:10.1139/p64-182
[2] N. Moazzen-Ahmadi, H. P. Gush, M. Halpern, H. Jagan-
nath, A. Leung and I. Ozier, “The Torsional Spectrum of
CH3CH3,” Journal of Chemical Physics, Vol. 88, No. 2,
1988, pp. 563-577. doi:10.1063/1.454183
[3] J. M. Fernandez-Sanchez, A. G. Valdenebro and S. Mon-
tero, “The Torsional Raman Spectra of C2H6 and C2D6,”
Journal of Chemical Physics, Vol. 91, No. 6, 1989, pp.
3327-3334. doi:10.1063/1.456908
[4] N. Moazzen-Ahmadi, A. R. W. McKellar, J. W. C. Johns
and I. Ozier, “Intensity Analysis of the Torsional Spec-
trum of CH3CH3,” Journal of Chemical Physics, Vol. 97,
No. 6, 1992, pp. 3981-3988. doi:10.1063/1.462937
[5] K. S. Pitzer and W. D. Gwinn, “Energy Levels and Ther-
modynamic Functions for Molecules with Internal Rota-
tion I. Rigid Frame with Attached Tops,” Journal of Che-
mical Physics, Vol. 10, No. 7, 1942, pp. 428-440.
doi:10.1063/1.1723744
[6] J. D. Swalen and D. R. Herschbach, “Internal Barrier of
Propylene Oxide from the Microwave Spectrum,” Jour-
nal of Chemical Physics, Vol. 27, No. 1, 1957, pp. 100-
108. doi:10.1063/1.1743645
[7] R. W. Kilb, C. C. Lin and E. B. Wilson, “Calculation of
Energy Levels for Internal Torsion and Over-All Rotation.
II. CH3CHO Type Molecules; Acetaldehyde Spectra,”
Journal of Chemical Physics, Vol. 26, No. 6, 1957, pp.
1695-1703. doi:10.1063/1.1743607
[8] R. Subramanian, S. E. Novick and R. K. Bohn, “Tor-
sional Analysis of 2-Butynol,” Journal of Molecular Spec-
troscopy, Vol. 222, No. 1, 2003, pp. 57-62.
doi:10.1016/S0022-2852(03)00170-X
[9] D. A. Shea, L. Goodman and M. G. White, “Acetone
n-Radical Cation Internal Rotation Spectrum: The Tor-
sional Potential Surface,” Journal of Chemical Physics,
Vol. 112, No. 6, 2000, pp. 2762-2768.
doi:10.1063/1.480850
[10] E. V. Ivash and D. M. Dennison, “The Methyl Alcohol
Molecule and Its Microwave Spectrum,” Journal of Che-
mical Physics, Vol. 21, No. 10, 1953, pp. 1804-1816.
doi:10.1063/1.1698668
[11] K. T. Hecht and D. M. Dennison, “Hindered Rotation in
Molecules with Relatively High Potential Barriers” Jour-
nal of Chemical Physics, Vol. 26, No. 1, 1957, pp. 31-47.
doi:10.1063/1.1743262
[12] G. А. Pitsevich and M. Shundalau, “Computer Simulation
of the Effect Exerted by Argon Matrix on the Internal
Rotation Barriers and Torsional States of Methanol
Molecule” Jo ur nal of Spectroscopy and Dyn amics, Vol. 2,
No. 3, 2012, p. 15
http://www.simplex-academic-publishers.com/jsd.aspx