A. N. IKOT ET AL.

1854

Figure 5. A variation of the effective potential as a function

of r for l = 1, 2, 3 and 4 with α = 1.

k is partially supported by the Nandy Resea

Grant No. 64-01-2271.

REFERENCES

[1] O. M. Al-Dossary, “Morse Potential Eigen-Energies

through the Asymptotic Iteration Method,” International

Journal of Quantum Chemistry, Vol. 107, No. 10, 2007

pp. 2040-2046. doi:10.1002/qua.21335

6. Acknowledgements

This worrch

,

[2] Y. F. Cheng and T. Q. Dai, “Exact Solutions of the Klein-

Gordon Equation with a Ring-Shaped Modified Kratze

Potential,” Chinese Journal of Physics, Vol. 45, No. 5,

ch, “Trigonometric Quark

QCD Traits,” The European

3, No. 1, 2007, pp. 1-4.

r

2007, p. 480.

[3] C. B. Compean and M. Kirchba

Confinement Potential of

Physical Journal A, Vol. 3

doi:10.1140/epja/i2007-10444-0

[4] C. B. Compean and M. Kirchbach, “The Trigonometric

Rosen-Morse Potential in the Supersymmetric Quantum

Mechanics and Its Exact Solutions,” Journal of Physics A

Vol. 39, No. 3

doi:10.1088/030

,

, 2006, p. 547.

5-4470/39/3/007

[5] A. Contreras-Astorga and D. J. Fernandez, “Supersym-

metric Partners of the Trigonometric Poschl-Teller Poten-

tials,” Journal of Physics A, Vol. 41, No. 47, 2008, Arti-

cle ID: 475303.

[6] F. Cooper, A. Khare and U. Sukhature, “Supersymmetry

and Quantum Mechanics,” Physics Reports, Vol. 251, No.

5-6, 1990, pp. 267-385.

doi:10.1016/0370-1573(94)00080-M

, 1999,

2/48/308

[7] J. J. Diaz, J. Negro, I. M. Nieto and O. Rosas, “The Su-

persymmetric Modified Poschl-Teller and Delta-Well

Potentials,” Journal of Physics A, Vol. 32, No. 48

p. 8447.

doi:10.1088/0305-4470/3

” Journal of Physics A

, Article ID: 358198.

cal Physics, Vol. 50, 2011, pp.

[8] D. J. Fernandez, “Supersymmetric Quantum Mechanics,”

arxiv: 0910.0192v1, 2009.

[9] R. I. Greene and C. Aldrich, “Variational Wave Function

for a Screened Coulomb Potential,,

Vol. 14, No. 6, 1976, pp. 2363-2366.

[10] A. S. Halberg, “Quasi-Exact Solvability of a Hyperbolic

Intermolecular Potential Induced by an Effective Mass

Step,” International Journal Mathematics and Mathe-

matical Sciences, Vol. 2011

[11] S. D. Hernandez and D. J. Fernandez, “Rosen-Morse

Potentials and Its Supersymmetric Partners,” Interna-

tional Journal of Theoreti

1993-2001.

[12] S. Ikhdair and R. Sever, “Polynomial Solutions of Non-

Central Potentials,” International Journal of Theoretical

Physics, Vol. 46, No. 10, 2002, pp. 2384-2395.

doi:10.1007/s10773-007-9356-8

[13] A. N. Ikot and L. E. Akpabio, “Approximate Solution of

Schrodinger Equation with Rosen-Morse Potential In-

. D. Agboola, “Ex-

cluding a Centrifugal Term,” Applied Physics Research,

Vol. 2, No. 2, 2010, p. 202.

[14] K. J. Oyewumi, E. O. Akinpelu and A

actly Complete Solutions of the Pseudoharmonic Poten-

tial in N-Dimensions,” International Journal of Theo-

retical Physics, Vol. 47, No. 4, 2008, pp. 1039-1057.

doi:10.1007/s10773-007-9532-x

[15] R. Sever, C. Tezcan, O. Yesiltas and M. Bucurget, “Exact

Solution of Effective Mass Schrodinger Equation for the

Hulthen Potential,” International Journal of Theoretical

Physics, Vol. 47, No. 9, 2008, pp. 2243-2248.

doi:10.1007/s10773-008-9656-7

[16] G. F. Wei, X. Y. Liu and W. L. Chen, “The Relativistic

Scattering States of the Hulthen Potential with an Im-

proved New Approximation Scheme to the C

Term,” International Journal of Tentrifugal

heoretical Physics, Vol.

48, No. 6, 2009, pp. 1649-1658.

doi:10.1007/s10773-009-9937-9

[17] H. X. Quan, L. Guang, W. Z. Min, N. L. Bin and M. Yan,

“Solving Dirac Equation with New Ring-Shaped Non-

Spherical Harmonic Oscillator,” Communications in The o-

retical Physics, Vol. 53, No. 2, 2010, p. 242.

doi:10.1088/0253-6102/53/2/07

[18] A. N. Ikot, A. D. Antia, L. E. Akpabio and J. A. O

“Analytic Solutions of Schroding

bu,

ound State

uation with Hulthen Po-

Solutions

of Physics,

o the

er Equation with Two-

Dimensional Harmonic Potential in Cartesian and Polar

Coordinates via Nikiforov-Uvarov Method,” Journal of

Vectorial Relativity, Vol. 6, No. 2, 2011, pp. 65-76.

[19] A. N. Ikot, L. E. Akpabio and E. J. Uwah, “B

Solution of the Klein-Gordon Eq

tential,” Electronic Journal of Theoretical Physics, Vol. 8,

No. 25, 2011, pp. 225-232.

[20] A. F. Nikiforov and U. B. Uvarov, “Special Functions of

Mathematical Physics,” Birkhausa, Basel, 1988.

[21] A. N. Ikot, L. E. Akpabio and J. A. Obu, “Exact

of Schrodinger Equation with Five-Parameter Potential,”

Journal of Vectorial Relativity, Vol. 6, No. 1, 2011, p. 1.

[22] S. Meyur and S. Debnath, “Lie Algebra Approach to Non-

Hermitian Hamiltonians,” Bulgarian Journal

Vol. 36, No. 2, 2009, pp. 77-87.

[23] S. Meyur, “Algebraic Aspect for Two Solvable Poten-

tials,” Electronic Journal of Theoretical Physics, Vol. 8,

No. 25, 2011, pp. 217-224.

[24] S. G. Roy, J. Choudhury, N. K. Sarkar, S. R. Karumuri

and R. Bhattacharjee, “A Lie Algebra Approach t

Schrodinger Equation for Bound States of Poschl-Teller

Copyright © 2012 SciRes. JMP