| 
					 Atmospheric and Climate Sciences, 2012, 2, 568-581  http://dx.doi.org/10.4236/acs.2012.24052 Published Online October 2012 (http://www.SciRP.org/journal/acs)  Spatial and Temporal Variations of Climate in Eur ope  Vladimir Kossobokov1,2, Jean-Louis Le Mouël2, Claude Allègre2  1Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia  2Institut de Physique du Globe de Paris, Paris, France  Email: volodya@mitp.ru    Received July 4, 2012; revised August 7, 2012; accepted August 16, 2012  ABSTRACT  Temperature series of the original individual measurements of the minimum and maximum daily temperatures from 24  stations located in different regions of Europe are considered with the objective of studying the stability or the variabil- ity of the “climate” in time and space. The patterns of the temperature statistics, the shapes of probability density functi-  ons, in particular, at different places and times allow comparisons based on the Kolmogorov-Smirnov test, the Shannon  entropy, and cluster analysis, used separately or in combination for the purposes of quantitative climate classification.    Keywords: Daily Air Temperature; Climate; Classification; Empirical Distribution Function; Entropy; Cluster Analysis  1. Introduction  In two recent papers, we analyzed the longest tempera- ture series in Europe (i.e., Prague, Bologna, and Uccle)  available from the European Climate Assessment and  Dataset [1]. The two former papers focused on the inves- tigation of a solar effect on temperature series [2,3]. In  the present paper we consider the temperature series  from 24 stations located in different regions of Europe  with the objective of studying the stability or the vari- ability of the “climate” in time and space. For that, inste-  ad of considering series of temporal averages like, e.g.,  the series of monthly temperatures of the Northern Hem-  isphere, or of Central England, etc., we make use in full  of the original individual measurements of the minimum  and maximum daily temperatures and compare statistics  of their distributions at different places and times.    2. The Data   We use the data set of the daily air temperature observa- tions over more than a hundred years (in one case, more  than two hundred years) published in 2007 by the Euro- pean Climate Assessment and Data Set, ECA&D. More  precisely, we have extracted from ECA&D the long se- ries of minimum and maximum temperatures (TN = Tmin   and TX = Tmax, respectively) at stations that sample dif- ferent climatic regions of Europe. We did not retain the  very long series of Central England [4] since we chose  using non-blended data. The list of the selected 24 sta-  tions (ordered from W to E), with their coordinates (lati-  tude and longitude) and length of temperature series, are  given in Table 1; their geographical distribution, along  with climate classification, is shown in Figure 1.  We essentially compute and plot the empirical prob- ability functions (pf’s), Fi(τ), and probability density  (distribution) functions (pdf’s), fi(τ), of the different se- ries T over different time intervals Yi = (yi+1, yi), where yi  – yi+1 = y years. By definition, for a given time interval,  Fi(τ) and fi(τ) are the ratios of the number of values from  the temperature intervals T ≤ τ and T ≤ τ < τ    to the  total number of values T, respectively. Of course pf’s and        Figure 1. Geographical location of the 24 European stations  with the daily air minimum and maximum temperature  observations over more than a hundred years. Each loca-  tion is color-coded in respect to the Köppen-Geiger climate  classes [10] listed in Table 1.  C opyright © 2012 SciRes.                                                                                  ACS  V. KOSSOBOKOV 569   Table 1. Geographical coordinates and the Köppen-Geiger climate class [10] of the 24 stations from ECA&D and the corre- sponding periods of the temperature series.  Station name Abr Class Latitude, ˚N Longitude, ˚E Start End  Armagh (UK) ARM Cfb 54.350 –6.650 1865 2001  Stornoway Airport (UK) STO Cfb 58.217 –6.317 1873 2001  Central England (UK) CET Cfb 52.417 –1.833 1881 2001  Oxford (UK) OXF Cfb 51.767 –1.267 1853 2001  Toulouse Blagnac (France) TOU Cfb 43.623 1.378 1878 2005  Paris Montsouris (France) PAR Cfb 48.823 2.337 1900 2001  Uccle (Belgium) UCC Cfb 50.800 4.350 1833 2001  Marseille Longchamp (France) MAR Csa 43.305 5.397 1900 2001  Karlsruhe (Germany) KAR Cfb 49.017 8.383 1876 2001  Nordby (Denmark) NOR Cfb 55.450 8.400 1874 2003  Frankfurt (Germany) FRA Cfb 50.117 8.667 1870 2001  Milan (Italy)* MIL Cfa 45.472 9.189 1838 2008  Hamburg Fuhlsbüttel (Germany) HAM Cfb 53.550 9.967 1879 2001  Tranebjerg (Denmark) TRA Cfb 55.850 10.600 1872 2003  Bologna (Italy) BOL Cfb 44.483 11.250 1814 2001  Salzburg (Austria) SAL Cfb 47.800 13.000 1874 2004  Berlin (Germany) BER Cfb 52.450 13.300 1876 2001  Praha Klementinum (Czech Republic) PRA Cfb 50.091 14.419 1775 2005  Zagreb Gric (Croatia) ZAG Cfb 45.817 15.978 1881 2001  Wien (Austria) WIE Cfb 48.233 16.350 1852 2004  St Petersburg (Russian Federation) StP Dfb 59.967 30.300 1881 2003  Velikie Lukie (Russian Federation) VEL Dfb 56.350 30.617 1881 2003  Arkhangelsk (Russian federation) ARK Dfc 64.500 40.733 1881 2003  Astrakhan (Russian Federation) AST BSk 46.283 46.283 1881 2003  Notes: (a) Cfa—warm temperate climate, fully humid, with hot summer; Cfb—warm temperate climate, fully humid, with warm summer; Csa—warm temper-  ate climate with dry and hot summer; Dfb—snow climate, fully humid, with warm summer; Dfc—snow climate, fully humid, with cool summer and cold winter;  BSk—cold steppe climate; (b) The two temperature series for Milan (ECA&D source IDs 105,247 for Tmin and 105248 for Tmax both starting in 1763) look  suspiciously coherent, possibly, man-made before 1838.    pdf’s are of classical use in climatology (see e.g. [5] and  references therein).  An extensive list of indices has been proposed to  characterize the climate at a given station from tempera-  ture, pressure, precipitation, etc recordings [6]. These are  of course very useful. Nevertheless, we think that the  patterns of the temperature statistics (the shapes of pdf’s,  in particular) can provide much additional information  allowing to characterize the “climate” at a given station  at a single glance.  Note: We take the ECA&D non-blended series as they  are, without submitting them to any kind of “homogeni-  zation” process. We think that such a process can hardly  be applied to the data without a deep knowledge of the  history of observations, which is particularly difficult to  achieve for the old stations with long series of records.  We prefer to trust the local observers whose diligent ef-  forts on collecting and archiving the existing data is in-  valuable. Blind “homogenization” to a pre-conceptual  model may lead to reject most of the data [7]: e.g., the  homogeneity checking results for the 1901-2009 period  (the ECA&D file TEMP_19012009_homogeneity.txt)  found only 6 “useful”, 1 “doubtful”, and 118 “suspect”  out of 122 stations.    Copyright © 2012 SciRes.                                                                                  ACS  V. KOSSOBOKOV  570  It is well known that some stations, in particular, those  installed in sites now included in a big city, can be af-  fected by a heat island effect (e.g. [8]). We will point out  some of them in the analysis.  3. The Empirical Distribution Functions  Let us start with taking all the daily minimum and  maximum temperatures observed at the station of Bolo-  gna (BOL), ranked according to the calendar day and  stacked. We consider successively the periods 1814-1970  and 1971-2000 (Figures 2(a) and (b)). The original read-  ings of temperatures corresponding to the two periods for  both Tmin (minimum daily temperature) and Tmax (maxi-  mum daily temperature) are in good agreement. Never-  theless, when averaging is applied, a slight increase in  Tmin and Tmax for the months of December, January,  February, and March, is noticeable (of the order of 1˚C -  2˚C). This might reflect the warming in Europe, in the  last decade of the 20th century noted by Le Mouël et al.  [9] to start actually in 1987.  We then compute and plot pf’s and pdf’s of Tmin and  Tmax with uniform bins     1˚C at every station over  successive periods of 30 years (and the remainder) de-  pending on the length of the series in order to examine  their long term evolution. Figures 3-5 illustrate the re-  sults to follow.    First of all, we observe the striking stability of pf’s and  pdf’s over time in all stations but those affected by a heat  island effect: the Tmin  and Tmax curves vary only slightly  over a hundred years or more. However, the comparison  of the temperature distributions derived from different  30-year intervals shows that these are hardly drawn from  the same distribution. Specifically, Figure 5 shows that  for the two most recent intervals the difference between  empirical probability distributions, F1(τ) – F0(τ), may  exceed +6% (Tmin at TRA and Tmax at MIL) indicating  evident “warming” or go below –5% (Tmax at UCC) in-  dicating evident “cooling”. Table 2 shows the results of  the comparison of empirical distributions for each pair of  time intervals at Prague (PRA), i.e. the longest ECA&D  series of Tmin and Tmax . The two sample Kolmogorov-  Smirnov statistic λK-S(D, n, m) = [nm/( n + m)]1/2D, where       (a)                                                             (b)  Figure 2. The daily minimum (left) and maximum (right) temperatures (a) and their averages (b) observed at Bologna on the  calendar day in 1814-1970 (blue) and 1971-2000 (red). The graphs of averages are supplied with the plus/minus two standard  deviation curves.   Copyright © 2012 SciRes.                                                                                  ACS  V. KOSSOBOKOV 571 a b   Figure 3. The empirical probability (distribution) functions, F(τ), of the minimum (a) and maximum (b) temperatures, Tmin  and Tmax, over different time intervals. Note: the complete set of plots for the 24 European stations is given in Supplement.  Copyright © 2012 SciRes.                                                                                  ACS  V. KOSSOBOKOV  572    a b Figure 4. The empirical probability density (distribution) functions, f(τ), of the minimum (a) and maximum (b) temperatures,  Tmin and Tmax, over different time intervals. Note: the complete set of plots for the 24 European stations is given in Supple-  ment.  Copyright © 2012 SciRes.                                                                                  ACS  V. KOSSOBOKOV 573 a b   Figure 5. The difference between the empirical probability functions, F(τ), of the minimum (a) and maximum (b) tempera-  tures, Tmin and Tmax, over different time intervals and the recent most one, Dk(τ) = Fk(τ) – F0(τ). Note: Dk(τ) > 0 indicates rela-  tive  “warm ing”,  while  Dk(τ) < 0 indicates relative “cooling”. The complete set of plots for the 24 European stations is given in  Supplement.  Copyright © 2012 SciRes.                                                                                  ACS  V. KOSSOBOKOV  Copyright © 2012 SciRes.                                                                                  ACS  574  Table 2. The K-S test comparison of 30-year intervals at Prague.  Tmin at Prague (PRAHA-KLEMENTINUM; source-ID: 100079).   1775-1804 1805-1834 1835-1864 1865-1894 1895-1924 1925-1954 1955-1984 1985-2005.VI   1 2 3 4 5 6 7 8  1 10957 –1.466 –5.371 –4.945 –5.350 –3.965 –5.432 –1.636  2 0.865 10957 –5.715 –4.968 –5.627 –3.582 –5.657 –0.548  3 0.142 0.048 10958 –1.105 –0.321 –0.007 –0.061 0.000  4 0.263 0.182 0.958 10957 –1.094 –0.095 –0.487 –0.012  5 1.108 0.994 3.451 2.574 10957 –0.676 –0.082 –0.002  6 0.574 0.325 2.998 2.195 1.527 10957 –1.467 0.000  7 1.879 1.530 4.593 3.791 1.948 1.941 10958 –0.020  8 2.819 4.108 5.609 5.417 3.977 3.814 3.247 7425  Tmax at Prague (PRAHA-KLEMENTINUM; source-ID: 100081).   1775-1804 1805-1834 1835-1864 1865-1894 1895-1924 1925-1954 1955-1984 1985-2005.VI  TX 1 2 3 4 5 6 7 8  1 10957 –0.946 –2.573 –1.709 –2.608 0.000 0.000 0.000  2 0.703 10957 –4.632 –3.191 –4.089 0.000 –0.280 0.000  3 0.115 0.010 10958 –0.077 –0.795 0.000 0.000 0.000  4 0.277 0.869 1.656 10957 –1.344 –0.047 –0.007 0.000  5 0.912 1.146 2.620 1.756 10957 –0.405 –0.020 -0.006  6 2.027 3.468 4.345 3.344 4.344 10957 –1.630 –0.006  7 2.326 3.280 4.526 3.811 2.873 0.872 10958 –0.019  8 4.421 6.946 5.896 5.503 5.166 3.037 2.710 7425  Note: the sample size of a 30-year interval is given on the diagonal, while the values of λKS– and λKS+ are put above and below the diagonal, respectively. The  λKS– and λKS+ above 1.36 in absolute value are highlighted (see text).    D = max |Fi(τ) – Fj(τ)| is the maximum value of the ab-  solute difference between the empirical distributions Fi(τ)  and Fj(τ) of the two samples (τ covers the entire range of  temperature index T = Tmin or Tmax), whose sizes are n  and m respectively. Table 2 summarizes the test results  in terms of λK-S, leaving the issue of statistical signifi-  cance in terms of probability to more delicate testing  against randomized data [3]. For the purpose of further  comparison, we distinguish the two possible outcomes of  the Kolmogorov-Smirnov test by providing in Table 2  both extremes, i.e. the minimum λK-S– and maximum  λK-S+ of (Fi(τ) – Fj(τ)). We see that the maximum of the  absolute values of λK-S– and λK-S+ are above the standard  critical value of 1.36 (highlighted) for all pairs of inter-  vals considered for Prague. This is a clear indication of  intrinsic variability of local “climate”, however quite  small at the time scale of a few decades, which in detail  analysis requires an accurate application of specially de-  signed problem oriented statistical tools (e.g. [3]). In this  respect it is notable that for Bologna (Figure 5, BOL) the  most recent interval (1971-2000), at the same time, is  “cooler” in terms of Tmin and “warmer” in terms of Tmax  than in the same one 30-year period (1911-1940) in the  past. There are also cases of a Z-shape differences of pf’s  with a “warming” at low temperatures and “cooling” at  high temperatures, like for Tmax in Paris and Uccle (Fig-  ure 5(b), PAR and UCC).  On the contrary, the shape patterns of pf’s and pdf’s  change quite significantly from one station to the other  (Figures 3 and 4). The sets of diagrams obtained for all  24 stations are self-explanatory and provide a lot of syn-  thetic information on the European temperatures in space  and time. In particular, we will show now that the shape  patterns of pf’s and pdf’s can be organized into three dis-  tinct groups corresponding to the different regions of  Europe with different climates (Figure 1).   a) The 4 stations located in the Russian Federation  (Arkhangelsk, St Petersburg, Velikie Lukie, Astrakhan)  V. KOSSOBOKOV 575 share the trait of having a harsh continental climate.  In Arkhangelsk, situated close to the polar circle, the  winters are very long and cold and the summers are short  and cool or moderately warm. Over the century, the than  probability curves (pf’s) show an overall warming of less  2˚C for negative Tmin and about 2˚C for almost the entire  range of Tmax  (Figures 3(a) and (b)). Note that the over-  all warming is essentially attributed to transition from  1884-1913 to 1914-1943, while the pf’s for the remaining  three intervals are much closer to each other for both Tmin  and Tmax. The probability density curves for Tmax and Tmin  (Figures 4(a) and (b)) exhibit a peak around 0˚C, with a  long heavy tail towards colder temperatures and a shoul-  der at higher temperatures (3˚C to 10˚C for Tmin and        Figure 6. The four-seasons’ probability density curves, f(τ), for Tmin (a) and Tmax (b) in Arkhangelsk. Note: the four seasons  are defined as follows: winter = November 7-February 5, spring = February 6-May 7, summer = May 8-August 7, August  8-November 6.  Copyright © 2012 SciRes.                                                                                  ACS  V. KOSSOBOKOV  576    5˚C to 20˚C for Tmax) (Figures 3(c) and (d)).  Probability density curves were drawn separately for  the four seasons (Figure 6). The Tmin and Tmax curves for  winter and spring are similar and they both exhibit a long  heavy tail towards lower temperatures, probably due to  the persistence of the snow cover. The curves for autumn  and summer are also similar after a translation. The high  proportion of Tmin for autumn and summer and Tmax for  winter and spring close to 0˚C accounts for the strong  peak in the stacked yearly curves.  St Petersburg and Velikie Lukie are both in a snow  zone of continental climate, but more to the south than  Arkhangelsk. Although the temperatures are less cold  than in Arkhangelsk, the yearly curves (Figure 4) still  exhibit a strong peak around 0˚C and a long tail towards  colder temperatures. However, there are more warm days  in autumn and summer and the curves exhibit an uplifted  shoulder with a distinct peak above 10˚C for Tmin and up  to 20˚C for Tmax.  In Astrakhan, one of the driest cities in Europe, on the  northern shore of the Caspian Sea, the steppe climate is  continental and the pdf curves exhibit again a long heavy  tail towards lower temperatures. The presence of two  well-identified peaks at temperatures around 0˚C and 20˚C  for Tmin (Figure 4(a) and 30˚C for Tmax (Figure 4(b))  accounts for cold winters and hot summers much warmer  than in St Petersburg or Velikie Lukie.  b) In central Europe (Berlin, Hamburg, Prague, Fran-  kfurt, Karlsruhe, Wien, Salzburg, Zagreb, Milan, Bolo-  gna), the climate is mild continental with no dry season,  not as harsh as in Russia.    A typical example is Prague (Figure 7) where Tmin and  Tmax temperatures have been observed since 1775. The  Tmin and Tmax pdf’s (Figure 4) for the periods 1775-1804,  1805-1834, 1835-1864, 1865-1894, 1895-1924, 1925-  1954, 1955-1984, and 1985-2005, are not very different,  they exhibit two distinct peaks above 0 and below 15˚C  for Tmin and around 5˚C and 20˚C for Tmax. The Tmin  curves for spring and autumn are not far apart from those  for winter and summer, respectively (Figure 7(a)), but  the Tmax curves for spring and summer are more clearly  shifted towards temperatures higher by up to 10˚C with  respect to those for winter and autumn (Figure 7(b)).  Although of a character somewhat transitional to that of  Western Europe, Karlsruhe, Frankfurt and Bologna  (Figure 8) can be, for simplicity sake, put together with  the stations of central Europe.  c) In Western Europe (Stornoway, Armagh, Central  England, Oxford, Tranebjerg, Nordby, Uccle, Paris, Tou-  louse, Marseille), the climate is frankly oceanic, warm-         Figure 7. The four-seasons’ probability density curves, f(τ), for Tmin (a) and Tmax (b) in Prague. Note: same as in Figure 6.  Copyright © 2012 SciRes.                                                                                  ACS  V. KOSSOBOKOV 577   (a)    (b)  Figure 8. The four-seasons’ probability density curves, f(τ), for Tmin (a) and Tmax (b) in Bologna. Note: same as in Figure 6.  Copyright © 2012 SciRes.                                                                                  ACS  V. KOSSOBOKOV  Copyright © 2012 SciRes.                                                                                  ACS  578    fully humid with warm summer, except for Marseille  with dry and hot summer. The peaks of pdf’s now over  lap yielding a single wide peak at about 10˚C for Tmin and  an almost flat plateau from 10˚C to above 20˚C for Tmax  (Figure 4). A typical example is Paris.  4. Temperature Changes   From the comparison of repartition pf and pdf curves, it  is possible to obtain an estimate of the average tempera- ture changes over successive 30 years period, for the  various stations. We just give a brief account of it.  a) At Arkhangelsk and St Petersburg (as already men- tioned above for Arkhangelsk, Figure 3) the average  Tmax is higher for about 2˚C for the three 30 years periods  starting in 1914, as compared with the period 1884-1913.  There is no significant difference between the periods  1914-1943, 1944-1973, 1974-2003. Tmi n  does not sig- nificantly vary from 1884 to 2003. Although somewhat  less clearly, Tmin and Tmax  at Velikie Lukie and Astrakhan  exhibit a similar behavior.  b) At Prague (Praha-Klementium), there is no dis-  cernible difference between the 30-year period curves for  Tmax starting in 1775 up to 1985. The curve for 1985-  2005 shows a temperature increase of about 1˚C or more.  There is a slighter increase in Tmin, moreover, the curves  for 1775-1804 and 1805-1834 show up about the same or  even higher temperatures in the upper quartiles of the  distributions. The temperatures at Salzburg, Wien, Karls-  ruhe and Bologna behave approximately in the same way.  At Nordby and Tranebjerg, although all the curves are  somewhat bundled together, there may be a slight in-  crease in both Tmin and Tmax over the last 30-year period.  At Zagreb, as well as at Berlin, and less clearly at  Hamburg and Frankfurt, there is no discernible evolution  of Tmin and Tmax since the 1880’s.  c) At the stations situated in the British Isles (Oxford,  Central England, Armagh), except for the northern most  one (Stornoway) there is practically no change of either  Tmax or Tmin over the whole period 1853-1972, then, in  the last interval 1973-2001) a small warming of about  0.5˚C is observed (see Le Mouël et al., 2009).   d) At Uccle, Toulouse, and very clearly at Paris and  Marseille, it is Tmin that increases over the last 30 years,  while Tmax behaves differently—decreases for about 1˚C  at Uccle, increases for about 1˚C at Toulouse, and does  not change that much at Paris and Marseille. This could  be attributed, at least partly, to a heat island effect, as the  cities of Brussels (close to Uccle), Toulouse, Paris, and  Marseille have considerably expanded in the last 30  years.  5. Quantitative Climate Classifications  We have identified above three climatic regions, for  which the shape of the pf and pdf curves is similar: East-  ern Europe, Central Europe, and Western Europe. We  will now retrieve this classification, in its broad lines,  through quantitative criteria.  Entropy is a measure of uncertainty or diversity of the  system. It characterizes also the quantity of information—  taken in average—which is missing for knowing whether  state i (here a temperature in the interval from Ti to Ti +  T) will be realized when only the pdf is known. Spe-  cifically, we compute the Shannon’s entropy H defined  as H = − pi lnpi , where pi is the probability density  function, i = 1, ···, N. The maximum H = lnN is reached  for the uniform distribution pi = 1/N (for all i), therefore,  for the sake of comparison, we use here normalized value  H* = H/lnN (i.e. , the so-called, efficiency in information  theory).  In Figure 9 the color of the observatory site depends  on the value of H* determined for the Tmin pdf’s within a  60˚C range split into 1˚C bins. At the 24 European sta-  tions considered the value of H* ranges from the maxi-  mum of 0.926 at Arkhangelsk (Russia) to the minimum  of 0.684 at Stornoway Airport (Scotland). The same as  abovementioned three groups of the European climate  zones can be obtained by setting the two boundary  thresholds of H* Tmin = 0.75 and 0.85. In a similar way the  classification of climatic regions could be obtained by  using the Shannon’s entropy based on Tmax (see Table 3);  specifically, the same three groups (though with a  slightly different order of stations in a group) can be dis-  tinguished by setting the boundary thresholds H* Tmax at  0.8 and 0.9. Moreover, additional boundary thresholds  (e.g. H* Tmin = 0.77 and 0.81 or H* Tmax = 0.81 and 0.87)  allow further details of classification that are not present  in the classical one [10], which attributes three quarters  of the sites considered to the same class Cfb, i.e. warm  zone fully humid with warm summer.  Cluster analysis provides another approach to a quan-  titative classification of climatic zones. It is illustrated  with an application of single link cluster analysis of the  correlations between the temperature pdf’s.  Figure 10  combines the two symmetric matrices of the correlation  coefficients between all the pairs of pdf’s at different  stations computed for Tmin (values below the diagonal)  and Tmax (values above the diagonal) leaving empty the  100% diagonal. To simplify the visual perception of the  pair correlations, their values are given on a color coded  background.  Figure 11 displays the dendrograms resulting from  single link cluster analyses of the correlation matrices for  the distributions of Tmi n  and Tmax given in Figure 10.  Each horizontal segment on a dendrogram represents a  link between the two clusters indicated by vertical seg-  ments. The level of similarity of a link is given by the  value of correlation shown on the ordinate axis (note that  V. KOSSOBOKOV 579      Figure 9. The normalized Shannon’s entropy H* for Tmin (left) and Tmax (right) at the 24 European stations.    Table 3. The normalized Shannon’s entropies H* computed  from Tmin and Tmax.    Location H*Tmin H*Tmax Order by  H*Tmin and H*Tmax STO—Stornoway airport (UK) 0.684 0.686 1 1  ARM—Armagh (UK) 0.712 0.743 2 2  CET—Central England (UK) 0.724 0.777 3 3  OXF—Oxford (UK) 0.740 0.795 4 4  PAR—Paris, (France) 0.769 0.840 5 10  MAR—Marseille (France) 0.773 0.802 6 5  UCC - Uccle (Belgium) 0.773 0.838 7 8  NOR—Nordby (Denmark) 0.779 0.817 8 6  TRA—Tranebjerg (Denmark) 0.779 0.817 9 7  TOU—Toulouse (France) 0.781 0.839 10 9  HAM—Hamburg (Germany) 0.789 0.845 11 11  FRA—Frankfurt (Germany) 0.795 0.865 12 12  KAR—Karlsruhe (Germany) 0.801 0.867 13 13  BER—Berlin (Germany) 0.806 0.870 14 14  ZAG—Zagreb Gric (Croatia) 0.820 0.879 15 19  WIE—Wien (Austria) 0.821 0.880 16 20  PRA—Prague (Czech Republic) 0.822 0.877 17 17  MIL—Milan (Italy) 0.823 0.872 18 15  SAL—Salzburg (Austria) 0.825 0.878 19 18  BOL—Bologna (Italy) 0.828 0.873 20 16  VEL—Velikie Lukie (Russia) 0.880 0.911 21 22  StP—St Petersburg (Russia) 0.886 0.906 22 21  AST—Astrakhan (Russia) 0.911 0.934 23 23  ARK—Arkhangelsk (Russia) 0.926 0.937 24 24  levels increase downwards). For example, the link, above  which a single cluster of the 24 stations is achieved, cor-  responds to a similarity level of 86.0% for Tmi n  (Figure  11(a)) and 78.4% for Tmax  (Figure 11(b)). For Tmin, there  are four clusters at a level of similarity above 95%: these  are Astrakhan (AST), Milan and Bologna (MIL, BOL),  Arkhangelsk (ARK), and the remaining 20 of the 24 sta-  tions. A level above 99.7% (i.e. the maximum of the  values below the diagonal in Figure 10) delivers the split  into 24 classes including each single station by breaking  the highest correlation link between Karlsruhe (KAR)  and Frankfurt (FRA). For Tmax, the level of similarity  above 90% provides separation into four clusters: these  are Astrakhan (AST), Arkhangelsk (ARK), St Petersburg  and Velikie Lukie (StP, VEL), and the remaining 20  European stations. The level of 95% splits two additional  clusters: Stornoway (STO) and Toulouse and Marseille  (TOU, MAR). A level above 99.4% (i.e. the maximum of  the values above the diagonal in Figure 10) is needed to  break all the Tmax correlation links between the 24 sta-  tions.  6. Conclusions  The study of the statistical distribution of daily minimum  and maximum temperatures in 24 European stations,  from long series of more than a century, reveals two  simple traits: a strong stability of the distributions at the  different stations during the whole time span available; a  strong, but ordered along a general trend, variability in  space.  In the Eastern European stations, one notices an in-  crease of about 2˚C of the maximum temperatures in the   Copyright © 2012 SciRes.                                                                                  ACS  V. KOSSOBOKOV  580      Figure 10. The correlations between the minimum daily temperature empirical density functions  at different stations (below  the diagonal); same for the maximum daily temperature (above the diagonal). To facilitate visual perception the correlation  values are given on the color- code d background.      Figure 11. The results of a single-link cluster analysis based on correlation of the daily temperature density functions as the  measure of similarity (upper plate for Tmin and lower plate for Tmax). The arbitrary levels of 85%, 90%, and 95% correlation  marked with the dash-lines.  Copyright © 2012 SciRes.                                                                                  ACS  V. KOSSOBOKOV 581   last 30 years with respect to the preceding time spans,  while in Central Europe there is an increase of about 1˚C  of the maximum temperatures at some stations, and no  discernible increase at the others. In Western Europe  (British Isles, Belgium, and France) there is generally no  discernible increase or decrease of the maximum and the  minimum temperatures along the last century. The  warming of some 0.6˚C observed in the last decade of the  20th century [9], is hardly visible in our analysis based of  30-year intervals. At big cities’ stations (Paris, Marseille,  Toulouse, Brussels) however, there is a noticeable in-  crease of the minimum temperature, probably due to a  heat island effect.  It is verified that there are several distinct stable cli-  matic regions in Europe, which is a common knowledge;  nevertheless, in each of them there is some variability in  time at each station as attested by the Kolmogorov-  Smirnov test, and larger variability from station to station.  The classification in climatic zones can be made by a  naked eye comparison of the pf and pdf curves, which  contain a lot of information. It can be corroborated by  quantitative analysis of those functions based on the  Shannon entropy or cluster analysis, used separately or in  combination. Such objective methods, as well as other  tools of pattern recognition, could be employed for a  more widespread and systematic classification of cli-  matic zones.  REFERENCES  [1] A. M. G. Klein Tank, et al., “Daily Dataset of 20th-Cen-  tury Surface Air Temperature and Precipitation Series for  the European Climate Assessment,” International Journal  of Climatology, Vol. 22, 2002, pp. 1441-1453.  [2] J.-L. Le Mouël, V. Kossobokov and V. Courtillot, “A  Solar Pattern in the Longest Temperature Series from  Three Stations in Europe,” Journal of Atmospheric and  Solar-Terrestrial Physics, Vol. 72, 2010, pp. 62-76.    doi:10.1016/j.jastp.2009.10.009  [3] V. Kossobokov, J.-L. Le Mouël and V. Courtillot, “A  Statistically Significant Signature of Multi-Decadal Solar  Activity Changes in Atmospheric Temperatures at Three  European Stations,” Journal of Atmospheric and Solar-  Terrestrial Physics, Vol. 72, 2010, pp. 595-606.   doi:10.1016/j.jastp.2010.02.016  [4] D. E. Parker, T. P. Legg and C. K. Folland, “A New  Daily Central England Temperature Series, 1772-1991,”  International Journal of Climatology, Vol. 12, 1992, pp.  317-342. doi:10.1002/joc.3370120402  [5] W. J. Burroughs, “Climate Change: A Multidisciplinary  Approach,” 2nd Edition, Cambridge University Press,  Cambridge UK, 2007, 390 p.    doi:10.1017/CBO9780511803819  [6] A. van Engelen, A. Klein Tank, G. van de Schrier and L.  Klok, “Towards an Operational System for Assessing  Observed Changes in Climate Extremes,” European Cli-  mate Assessment & Dataset (ECA&D) Report 2008, Pub-  lication 224, KNMI, 2008.  [7] V. Kossobokov, J.-L. Le Mouël and V. Courtillot, “Inter-  active Comment on ‘On Misleading Solar-Climate Rela-  tionship’ by B. Legras, et al.,” Climate of the Past Dis-  cussions, Vol. 6, 2010, p. C342.   http://www.clim-past-discuss.net/6/C342/2010/cpd-6-C34 2-2010.pdf  [8] R. R. McKitrick and P. J. Michaels, “Quantifying the  Influence of Anthropogenic Surface Processes and Inho-  mogeneities on Gridded Global Climate Data,” Journal of  Geophysical Research, Vol. 112, 2007, Article ID: D24S09.    doi:10.1029/2007JD008465  [9] J.-L. Le Mouël, E. Blanter, M. Shnirman and V. Courtil-  lot, “Evidence for Solar Forcing in Variability of Tem-  peratures and Pressures in Europe,” Journal of Atmos-  pheric and Solar-Terrestrial Physics, Vol. 71, 2009, pp.  1309-1321. doi:10.1016/j.jastp.2009.05.006  [10] M. Kottek, J. Grieser, C. Beck, B. Rudolf and F. Rubel,  “World Map of the Köppen-Geiger Climate Classification  Updated,”  Meteorologische Zeitschrift, Vol. 15, No. 3,  2006, pp. 259-263. doi:10.1127/0941-2948/2006/0130      Copyright © 2012 SciRes.                                                                                  ACS  |