
K. YOSHIDA ET AL.
Copyright © 2012 SciRes. ACES
464
[5] W. Ma, et al., “Thermally Stable, Efficient Polymer Solar
Cells with Nanoscale Control of the Interpenetrating Net-
work Morphology,” Advanced Functional Materials, Vol.
15, No. 10, 2005, pp. 1617-1622.
doi:10.1002/adfm.200500211
[6] A. J. Hauch, et al., “Flexible Organic P3HT:PCBM Bulk-
Heterojunction Modules with More than 1 Year Outdoor
Lifetime,” Solar Energy Materials and Solar Cells, Vol.
92, No. 7, 2008, pp. 727-731.
doi:10.1016/j.solmat.2008.01.004
[7] P. Peumans and S. R. Forrest, “Very-High-Efficiency
Double-Heterostructure Copper Phthalocyanine/C60 Photo-
voltaic Cells,” Applied Physics Letters, Vol. 79, No. 1,
2001, pp. 126-128. doi:10.1063/1.1384001
[8] L. Li, et al., “Organic Thin-Film Transistors of Phthalo-
cyanines,” Pure and Applied Chemistry, Vol. 80, No. 11,
2008, pp. 2231-2240. doi:10.1351/pac200880112231
[9] N. M. Bamsey, et al., “Integration of an M-Phthalocya-
nine Layer into Solution-Processed Organic Photovoltaic
Cells for Improved Spectral Coverage,” Solar Energy
Materials and Solar Cells, Vol. 95, No. 7, 2008, pp.
1970-1973. doi:10.1016/j.solmat.2011.01.042
[10] N. M. Bamsey, et al., “Heteromorphic Chloroindium
Phthalocyanine Films for Improved Photovoltaic Per-
formance,” Solar Energy Materials and Solar Cells, Vol.
95, No. 10, 2011, pp. 2937-2940.
doi:10.1016/j.solmat.2011.06.006
[11] D. Y. Kim, F. So and Y. Gao, “Aluminum Phthalocya-
ninechloride/C60 Organic Photovoltaic Cells with High
Open-Circuit Voltages,” Solar Energy Materials and So-
lar Cells, Vol. 93, No. 9, 2009, pp. 1688-1691.
doi:10.1016/j.solmat.2009.04.003
[12] F. C. Krebs, “Air Stable Polymer Photovoltaics Based on
a Process Free from Vacuum Steps and Fullerenes,” Solar
Energy Materials and Solar Cells, Vol. 92, No. 7, 2008,
pp. 715-726. doi:10.1016/j.solmat.2008.01.013
[13] T. Kuwabara, et al., ”Highly Durable Inverted-Type Or-
ganic Solar Cell Using Amorphous Titanium Oxide as
Electron Collection Electrode Inserted between ITO and
Organic Layer,” Solar Energy Materials and Solar Cells,
Vol. 92, No. 11, 2008, pp. 1476-1482.
doi:10.1016/j.solmat.2008.06.012
[14] Y. Lin, et al., “High-efficiency Inverted Polymer Solar
Cells with Solution-Processed Metal Oxides,” Solar En-
ergy Materials and Solar Cells, Vol. 95, No. 8, 2011, pp.
2511-2515. doi:10.1016/j.solmat.2011.05.005
[15] T. Oku, et al., “Fabrication and Characterization of Full-
erene-Based Bulk Heterojunction Solar Cells with Por-
phyrin, CuInS2, Diamond and Exciton-Diffusion Block-
ing Layer,” Energies, Vol. 3, No. 4, 2010, pp. 671-685.
doi:10.3390/en3040671
[16] T. Oku, et al., “Fabrication and Characterization of Full-
erene/Porphyrin Bulk Heterojunction Solar Cells,” Jour-
nal of Physics and Chemistry of Solids, Vol. 71, No. 4,
2010, pp. 551-555. doi:10.1016/j.jpcs.2009.12.034
[17] T. Oku, et al., “Formation and Characterization of Poly-
mer/Fullerene Bulk Heterojunction Solar Cells,” Journal
of Physics and Chemistry of Solids, Vol. 69, No. 5-6,
2008, pp. 1276-1279. doi:10.1016/j.jpcs.2007.10.117