R. TENZER, M. BAGHERBANDI

928

[4] J. F. Hayford and W. Bowie, “The Effect of Topography

and Isostatic Compensation upon the Intensity of Grav-

ity,” BiblioBazaar, Charleston, 1912.

[5] G. B. Airy, “On the Computations of the Effect of the

Attraction of the Mountain Masses as Disturbing the Ap-

parent Astronomical Latitude of Stations in Geodetic

Surveys,” Transactions of the Royal Society of London,

Vol. 145, 1855, pp. 101-104.

[6] W. A. Heiskanen and F. A. Vening Meinesz, “The Earth

and Its Gravity Field,” McGraw-Hill Book Company Inc.,

New York, 1958.

[7] F. A. Vening Meinesz, “Une Nouvelle Méthode Pour la

Réduction Isostatique Régionale de l’Intensité de la Pe-

santeur,” Bulletin Geodesique, Vol. 29, No. 1, 1931, pp.

33-51. doi:10.1007/BF03030038

[8] H. Moritz, “The Figure of the Earth,” Wichmann H.,

Karlsruhe, 1990.

[9] L. E. Sjöberg, “Solving Vening Meinesz-Moritz Inverse

Problem in Isostasy,” Geophysical Journal International,

Vol. 179, No. 3, 2009, pp. 1527-1536.

doi:10.1111/j.1365-246X.2009.04397.x

[10] L. E. Sjöberg and M. Bagherbandi, “A Method of Esti-

mating the Moho Density Contrast with A Tentative Ap-

plication by EGM08 and CRUST2.0,” Acta Geophysica,

Vol. 59, No. 3, 2011, pp. 502-525.

doi:10.2478/s11600-011-0004-6

[11] M. Bagherbandi and L. E. Sjöberg, “Comparison of

Crustal Thickness from Two Isostatic Models versus

CRUST2.0,” Studia Geophysica et Geodartica, Vol. 55,

No. 4, 2011, pp. 641-666.

doi:10.1007/s11200-010-9030-0

[12] C. Bassin, G. Laske and T. G. Masters, “The Current

Limits of Resolution for Surface Wave Tomography in

North America,” EOS Transactions, American Geo-

physical Union, Vol. 81, 2000.

[13] M. K. Kaban, P. Schwintzer and S. A. Tikhotsky, “A

Global Isostatic Gravity Model of the Earth,” Geophysi-

cal Journal International, Vol. 136, No. 3, 1999, pp. 519-

536. doi:10.1046/j.1365-246x.1999.00731.x

[14] M. K. Kaban, P. Schwintzer and Ch. Reigber, “A New

Isostatic Model of the Lithosphere and Gravity Field,”

Journal of Geodesy, Vol. 78, No. 6, 2004, pp. 368-385.

doi:10.1007/s00190-004-0401-6

[15] R. Tenzer, Hamayun and P. Vajda, “Global Maps of the

CRUST2.0 Crustal Components Stripped Gravity Distur-

bances,” Journal of Geophysical Research, Vol. 114, No.

B5, 2009, pp. 281-297.

[16] R. Tenzer, V. Gladkikh, P. Vajda and P. Novák, “Spatial

and Spectral Analysis of Refined Gravity Data for Mod-

elling the Crust-Mantle Interface and Mantle-Lithosphere

Structure,” Surveys in Geophysics, Vol. 33, No. 5, 2012,

pp. 817-839. doi:10.1007/s10712-012-9173-3

[17] C. Braitenberg, S. Wienecke and Y. Wang, “Basement

Structures from Satellite-Derived Gravity Field: South

China Sea ridge,” Journal of Geophysical Research, Vol.

111, 2006, Article ID: B05407.

doi:10.1029/2005JB003938

[18] S. Wienecke, C. Braitenberg and H.-J. Götze, “A New

Analytical Solution Estimating the Flexural Rigidity in

the Central Andes,” Geophysical Journal International,

Vol. 169, No. 3, 2007, pp. 789-794.

doi:10.1111/j.1365-246X.2007.03396.x

[19] P. Vajda, P. Vaníček, P. Novák, R. Tenzer and A. Ell-

mann, “Secondary Indirect Effects in Gravity Anomaly

Data Inversion or Interpretation,” Journal of Geophysical

Research, Vol. 112, 2007, Article ID: B06411.

[20] R. Tenzer, P. Vajda and P. Hamayun, “A Mathematical

Model of the Bathymetry-Generated External Gravita-

tional Field,” Contributions to Geophysics and Geodesy,

Vol. 40, No. 1, 2010, pp. 31-44.

doi:10.2478/v10126-010-0002-8

[21] R. Tenzer, A. Abdalla, P. Vajda and P. Hamayun, “The

Spherical Harmonic Representation of the Gravitational

Field Quantities Generated by the Ice Density Contrast,”

Contributions to Geophysics and Geodesy, Vol. 40, No. 3,

2010, pp. 207-223. doi:10.2478/v10126-010-0009-1

[22] R. Tenzer, P. Novák, P. Vajda, V. Gladkikh and P. Ha-

mayun, “Spectral Harmonic Analysis and Synthesis of

Earth’s Crust Gravity Field,” Computational Geosciences,

Vol. 16, No. 1, 2012, pp. 193-207.

doi:10.1007/s10596-011-9264-0

[23] R. Tenzer, Hamayun and P. Vajda, “A Global Correlation

of the Step-Wise Consolidated Crust-Stripped Gravity

Field Quantities with the Topography, Bathymetry, and

the CRUST2.0 Moho Boundary,” Contributions to Geo-

physics and Geodesy, Vol. 39, No. 2, 2009, pp. 133-147.

doi:10.2478/v10126-009-0006-4

[24] N. K. Pavlis, S. A. Holmes, S. C. Kenyon and J. K. Factor,

“The Development and Evaluation of the Earth Gravita-

tional Model 2008 (EGM2008),” Journal of Geophysical

Research, Vol. 117, 2012, Article ID: B04406.

[25] H. Moritz, “Advanced Physical Geodesy,” Abacus Press,

Tunbridge Wells, 1980.

[26] N. K. Pavlis, J. K. Factor and S. A. Holmes, “Ter-

rain-Related Gravimetric Quantities Computed for the

Next EGM,” In: A. Kiliçoglu and R. Forsberg, Eds.,

Gravity Field of the Earth. Proceedings of the 1st Inter-

national Symposium of the International Gravity Field

Service, Harita Dergisi, No. 18, General Command of

Mapping, Ankara, Turkey, 2007.

[27] W. J. Hinze, “Bouguer Reduction Density, Why 2.67?”

Geophysics, Vol. 68, No. 5, 2003, pp. 1559-1560.

doi:10.1190/1.1620629

[28] R. Tenzer, P. Novák and V. Gladkikh, “The Bathymetric

Stripping Corrections to Gravity Field Quantities for a

Depth-Dependant Model of the Seawater Density,” Ma-

rine Geodesy, Vol. 35, No. 2, 2012, pp. 198-220.

doi:10.1080/01490419.2012.670592

[29] V. Gladkikh and R. Tenzer, “A Mathematical Model of

the Global Ocean Saltwater Density Distribution,” Pure

and Applied Geophysics, Vol. 169, No. 1-2, 2011, pp.

249-257. doi:10.1007/s00024-011-0275-5

[30] D. R. Johnson, H. E. Garcia and T. P. Boyer, “World

Ocean Database 2009 Tutorial,” In: S. Levitus, Ed.,

NODC Internal Report 21, NOAA Printing Office, Silver

Spring, 2009, 18 p.

[31] V. V. Gouretski and K. P. Koltermann, “Berichte des

Copyright © 2012 SciRes. IJG