I. E. BULYZHENKOV 1477
pseudo-Riemannian geometry for all world m
Th carriers can be ob-
when they maintain
cs.
Space-time-energy self-o
t 10−15 m, then this ma
atter.
erefore, joint evolution of energy
served only in common sub-spaces
universal (for all matter) sub-metri
rganization of extended mat-
ter can be well described without 3D metric ripples,
which have no much sense in strictly flat material space.
Laboratory search of observable chiral phenomena for
paired vector interactions in flat material space is worth
to be performed before expansive projects to find 3D
metric ripples in cosmic space. Record measurements of
flat material space beyond the present limit 10−18 m
might not be required for confirmation of the residual
EM nature of elementary masses under their Einstein-
type geometrization. Once chiral symmetry for hadrons
was violated ass-forming symme-
try was equally violated in the entire nonlocal structure
of the superfluid astroparticle [2] or in its infinite mate-
rial space. Non-empty Euclidean 3-space does match
curved 4D space-time in metric gravitation. Such a
matching allows the extended radial electron to move
(both in theory and in practice) without spatial splits of
mass and electric charge densities. Strict spatial flatness
is a real way for quantization of elementary fields and for
unified geometrization of extended gravitational and
electric charges.
8. Acknowledgements
I acknowledge useful discussions with Yu. S. Vladimirov
regarding relation nature for binary interactions of ele-
mentary matter and for the non-empty space concept.
REFERENCES
[1] I. E. Bulyzhenkov, “Thermoelectric Flux in Supercon-
ducting Hollow Cylinders,” Physical Review B, Vol. 51,
No. 2, 1995, p. 1137. doi:10.1103/PhysRevB.51.1137
[2] I. E. Bulyzhenkov, “Superfluid Mass-Energy Densities of
Nonlocal Particle and Gravitational Field,” Journal of
Superconductivity and Novel Magnetism, Vol. 22, No. 8,
2009, pp. 723-727.doi:10.1007/s10948-009-0583-5
[3] I. E. Bulyzhenkov, “Relativistic Quantization of Cooper
Pairs and Distributed Electrons in Rotating Superconduc-
tors,” Journal of Superconductivity and Novel Magnetism
27-629.
510-9
,
Vol. 22, No. 7, 2009, pp. 6
doi:10.1007/s10948-009-0
pp
225-261.
[5] A. Einstein, S ad, 1915, pp. 778
799, 831, 844.
nalen
[4] A. Einstein and M. Grossmann, “Entwurf Einer Verallge-
Meinerten Relativitatstheorie und Einer,” Zeitschrift für
angewandte Mathematik und Physik., Vol. 62, 1913, .
itzungsber. d. Berl. Ak,
[6] A. Einstein, “Die Grundlage der Allgemeinen Relativität-
stheorie,” Annalen der Physik, Vol. 49, 1916, pp. 769-
822.
[7] D. Hilbert, “Die Grundlagen der Physik,” Nachrichten K.
Gesellschaft Wiss. Gøttingen, Math-Phys. Klasse, Heft 3,
1915, p. 395.
[8] G. Mie, “Grundlagen einer Theorie der Materie,” An
der Physik, Vol. 344, No. 11, 1912, pp. 1-40.
doi:10.1002/andp.19123441102
[9] K. Schwarzschild, “Uber das Gravitationsfeld eines Mas-
senpunktes nach der Einsteinsche
berichte der Königlich-Preussisc n Theorie,” Sitzungs-
hen Akademie der Wis-
ol. 19, 1916, p. 197.
. 57, No. 2, 1940, pp. 147-150.
senschaften, Vol. 3, 1916, pp. 189-196.
[10] J. Droste, “The Field of a Single Centre in Einstein’s
Theory of Gravitation,” Proc. Kon. Ned. Akad. Wet. Am-
sterdam, V
[11] N. Rosen, “General Relativity and Flat Space. I,” Physi-
cal Review, Vol
doi:10.1103/PhysRev.57.147
[12] A. A. Logunov, “Theory of Gravitational Field,” Moscow,
Nauka, 2001.
, pp. 955-
[13] W. Petry, “Gravitation in Flat Space-Time,” General
Relativity and Gravitation, Vol. 13, No. 9, 1981, p. 865.
N. I. Lobache[14] vsky, “A Concise Outline of the Founda-
tions of Geometry,” University of Kazan Messenger, Ka-
zan, 1829.
J. Bolyai, “Appendix Explainin[15] g the Absolutely True
Science of Space,” 1832.
[16] B. Riemann, “On the Hypotheses that Form the Founda-
tions of Geometry,” Nachrichten K. Gesellschaft Wiss.
Gottingen, 1868.
[17] P. De Bernardis, et al., “A Flat Universe from High-Re-
solution Maps of the Cosmic Microwave Background
Radiation,” Nature, Vol. 404, No. 6781, 2000
959. doi:10.1038/35010035
[18] A. Lange, et al., “Cosmological Parameters from
Results of Boomerang,” Physic the First
al Review D, Vol. 63, No.
l., “MAXIMA-1: A Measurement of the
,
4, 2001, Artical ID: 042001.
[19] S. Hanany, et a
Cosmic Microwave Background Anisotropy on Angular
Scales of 10' - 5˚,” Astrophysical Journal, Vol. 545, No. 1
2001, pp. L5-L9. doi:10.1086/317322
[20] E. Komatsu, et al., “Five-Year Wilkinson Microwave
Anisotropy Probe Observations: Cosmological Interpreta-
tion,” Astrophysical Journal Supplement Series, Vol. 180,
No. 2, 2009, pp. 330-376.
doi:10.1088/0067-0049/180/2/330
[21] C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravita-
tion,” Freeman, San Francisco, 1973.
[22] R. Wald, “General Relativity,” University of Chicago
Press, Chicago, 1984.
[23] C. M. Will, “Theory and Experiment in Gravitational
Physics,” Cambridge University Press, Cambridge, 1981.
d Cosmology,” John Wiley
[24] L. D. Landau and E. M. Lifshitz, “The Classical Theory
of Fields,” Pergamon, Oxford, 1971.
[25] S. Weinberg, “Gravitation an
and Sons, New York, 1972.
[26] I. E. Bulyzhenkov, “Einstein’s Gravitation for Machian
Relativism of Nonlocal Energy-Charges,” International
Copyright © 2012 SciRes. JMP