
M. HANIF ET AL.
Copyright © 2012 SciRes. JMP
1669
nm) to study the laser produced nickel alloy plasma. The
emission spectrum of the plasma reveals transitions of
neutral nickel and iron. The electron temperature and the
electron number density have been determined along the
axial positions of the plasma plume. The temperature and
the electron number density both close to the target are
maximum. The temperature and the number density de-
crease along the direction of expansion of the plume. The
temperature and number density are different for both
modes of the laser, because of the difference in the en-
ergy per photon in each mode. We have also determined
the electron number density for different values of the
laser energy. In both modes of the laser, we have ob-
served an identical trend of the variation of electron
number density as a function of the laser energy. The
variation in the electron number density with the laser
energy also shows a similar behaviour.
5. Acknowledgements
M. Hanif is thankful to MCS and National University of
Sciences & Technology (NUST), Islamabad for the en-
couragement in terms of provision of time and financial
support to carry out research work.
REFERENCES
[1] L. J. Radziemski and D. A. Cremers, “Laser-Induced Plas-
mas and Applications,” Marcel Dekker, New York, 1989.
[2] J. C. Miller and R. F. Haglund Jr., “Laser Ablation:
Mechanisms and Applications,” Springer-Verlag, Berlin,
1991. doi:10.1007/BFb0048346
[3] D. A. Cremers and L. J. Radziemski, “Handbook of La-
ser-Induced Breakdown Spectroscopy,” Wiley, New York,
2006. doi:10.1002/0470093013
[4] A. Miziolek, V. Palleschi and I. Schechter, “Laser-In-
duced Breakdown Spectroscopy (LIBS): Fundamentals
and Applications,” Cambridge University Press, Cambridge,
2006. doi:10.1017/CBO9780511541261
[5] J. P. Singh and S. N. Thakur, “Laser-Induced Breakdown
Spectroscopy,” Elsevier Science, Amsterdam, 2007.
[6] J. E. Lawler and S. Salih, “Radiative Lifetimes in Ni II,”
Physical Review A, Vol. 35, No. 12, 1987, pp. 5046-5050.
doi:10.1103/PhysRevA.35.5046
[7] F. S. Ferrero, J. Manrique, M. Zwegers and J. Campost,
“Determination of Transition Probabilities of 3d84p-3d84s
Lines of Ni II by Emission of Laser-Produced Plasmas,”
Journal of Physics B: Atomic Molecular Physics, Vol. 30,
No. 4, 1997, pp. 893-903.
doi:10.1088/0953-4075/30/4/011
[8] A. Varga, R. M. G. Martinez, G. Zaray and F. Fodor, “In-
vestigation of Effects of Cadmium, Lead, Nickel and Va-
nadium Contamination on the Uptake and Transport Proc-
esses in Cucumber Plants by TXRF Spectrometry,” Spec-
trochemica Acta Part B, Vol. 54, No. 10, 1999, pp. 1455-
1462. doi:10.1016/S0584-8547(99)00105-6
[9] C. Aragon, J. Bengoechea and J. A. Aguilera, “Influence
of the Optical Depth on Spectral Line Emission from La-
ser-Induced Plasmas,” Spectrochemica Acta Part B, Vol.
56, No. 2, 2001, pp. 619-628.
doi:10.1016/S0584-8547(01)00172-0
[10] K. Wagatsuma and H. Honda, “Influence of the Optical
Depth on Spectral Line Emission from Laser-Induced
Plasmas,” Spectrochemica Acta Part B, Vol. 60, No. 12,
2005, pp. 1538-1544. doi:10.1016/j.sab.2005.10.004
[11] C. Aragon, F. Penalba and J. A. Aguilera, “Spatial Distri-
butions of the Number Densities of Neutral Atoms and
Ions for the Different Elements in a Laser Induced Plasma
Generated with a Ni-Fe-Al Alloy,” Analytical and Bio-
analytical Chemistry, Vol. 385, No. 2, 2006, pp. 295-302.
doi:10.1007/s00216-006-0301-0
[12] S. Nakamura and K. Wagatsuma, “Emission Characteris-
tics of Nickel Ionic Lines Excited by Reduced-Pressure
Laser-Induced Plasmas Using Argon, Krypton, Nitrogen,
and Air as the Plasma Gas,” Spectrochemica Acta Part B,
Vol. 62, No. 9, 2007, pp. 1303-1310.
doi:10.1016/j.sab.2007.10.008
[13] R. Mayo, M. Ortz and M. Plaza, “Measured Stark Widths
of Several Ni II Spectral Lines,” Journal of Physics B:
Atomic Molecular and Optical Physics, Vol. 41, No. 9,
2008, pp. 1-5. doi:10.1088/0953-4075/41/9/095702
[14] M. Hanif, M. Salik and M. A. Baig, “Spectroscopic Stud-
ies of the Laser Produced Lead Plasma,” Journal of Plas-
ma Science and Technology, Vol. 13, No. 2, 2011, pp.
129-134. doi:10.1088/1009-0630/13/2/01
[15] M. Salik, M. Hanif and M. A. Baig, “Plasma Diagnostic
Study of Alumina (Al2O3) Generated by the Fundamental
and Second Harmonics of a Nd:YAG Laser,” IEEE Tran-
sactions on Plasma Science, Vol. 36, No. 9, 2011, pp.
1861-1866. doi:10.1109/TPS.2011.2159852
[16] M. Hanif, M. Salik and M. A. Baig, “Quantitative Studies
of Copper Plasma Using Laser Induced Breakdown Spec-
troscopy,” Journal of Optics and Lasers in Engineering,
Vol. 49, No. 12, 2011, pp. 1456-1461.
doi:10.1016/j.optlaseng.2011.06.013
[17] C. E. Moore, “Atomic Energy Levels,” NBS Circular No.
467, Washington DC, 1971.
[18] NIST Atomic Spectra Database, “Kurucz Output Atomic
Spectra Line Database from R.L. Kurucz’s CD-ROM 23.”
[19] D. Lacroix and G. Jeandel and C. Boudot, “Pectroscopic
Characterization of Laser-Induced Plasma Created during
Welding with a Pulsed Nd:YAG Laser,” Journal of Ap-
plied Physics, Vol. 81, 1997, pp. 6599-6606.
doi:10.1063/1.365198
[20] H. R. Griem, “Principles of Plasma Spectroscopy,” Cam-
bridge University Press, Cambridge, 1997.
doi:10.1017/CBO9780511524578
[21] R. W. P. McWhirter, “Plasma Diagnostic Techniques,”
Academic Press, New York, 1965.
[22] O. Barthélemy, J. Margot, S. Laville, F. Vidal, M. Chaker,
T. W. Johnston, B. Le Drogoff and M. Sabsabi, “Investi-
gation of the State of Local Thermodynamic Equilibrium
of a Laser-Produced Aluminum Plasma,” Applied Spec-
troscopy, Vol. 59, No. 4, 2005, pp. 529-536.
doi:10.1366/0003702053641531