B. AL-ZAHRANI

Copyright © 2012 SciRes. OJS

423

which led to a considerable improvement of the paper. the GP distribution.

Table 1 shows the numerical results and the MLE of

the parameters

,

and p when the actual values of

the parameters are 1REFERENCES

, and . Note that in

the table, we use for example 0*3 to abbreviate (0, 0, 0).

0.5p

ˆ

[1] A. Balkema and L. de Haan, “Residual Life Time at Great

Age,” Annals of Probability, Vol. 2, No. 5, 1974, pp. 792-

804. doi:10.1214/aop/1176996548

4. Conclusion [2] M. C. Bryson, “Heavy-Tailed Distributions: Properties and

Tests,” Technometrics, Vol. 16, No. 1, 1974, pp. 61-68.

doi:10.1080/00401706.1974.10489150

Here we have derived the maximum likelihood esti-

mators and their respective variance-covariance matrix

for the generalized Pareto distribution based on pro-

gressive type-II censoring with random removals. The

asymptotic distribution of the maximum likelihood esti-

mator can be used to construct confidence intervals for

the involved parameters.

[3] N. Johnson, S. Kotz and N. Balakrishnan, “Continuous

Univariate Distribution,” Vol. 1, 2nd Edition, John Wiley,

New York, 1994.

[4] B. C. Arnold, “Pareto Distributions,” Silver Spring, In-

ter nat i ona l C o operat i v e Pub l i s hing Hous e , Mar yl and , 1983.

[5] N. Balakrishnan and R. Aggarwala, “Progressive Cen-

soring: Theory Methods and Applications,” Birkhuser

Publishers, Boston, 2000.

5. Acknowledgements

The author is grateful to the referee for his comments [6] H. K. Yuen and S. K. Tse, “Parameters Estimation for

Weibull Distributed Lifetimes under Progressive Censor-

ing with Random Removals,” Journal of Statistical Com-

putation & Simulation, Vol. 55, No. 1, 1996, pp. 57-71.

doi:10.1080/00949659608811749

Table 1. The maximum likelihood estimator of α, β and p.

ˆ

ˆ

n m r

15 3 6, 4, 2 0.5556 1.1424 1.0139

5 5, 4, 0, 1, 0 0.5882 1.6692 1.0768

7 4, 2*2, 0*4 0.5714 0.8226 1.0682

9 4, 1*2, 0*6 0.6667 0.9096 1.1834

11 1, 3, 0*9 0.5714 1.3048 1.0335

13 0, 2, 0*11 0.5001 1.3379 1.0670

20 9 5, 3, 2, 0, 1, 0*4 0.5000 0.8163 1.0202

11 5, 0, 3, 0, 1, 0*6 0.4737 1.0506 1.0682

13 5, 0*3, 2, 0*8 0.4667 0.7410 1.0834

15 3, 1, 0, 1, 0*11 0.5556 0.9885 1.0701

17 2, 1, 0*15 0.7500 0.8736 1.0130

19 0, 1, 0*17 0.5020 0.8891 0.9479

30 19 6, 2, 1, 2, 0*15 0.5238 0.7631 1.2202

21 4, 3, 1*2, 0*17 0.5294 0.9390 1.1281

23 3*2, 0*4, 1, 0*16 0.4375 0.8137 0.9466

25 3, 2, 0*23 0.7143 1.0339 1.0394

27 2, 1, 0*25 0.7500 0.8906 1.0044

29 0, 1, 0*27 0.5000 0.9166 1.0962

[7] S. K. Tse and H. K. Yuen, “Expected Experiment Times

for the Weibull Distribution under Progressive Censoring

with Random Removals,” Journal of Applied Statistics,

Vol. 25, No. 1, 1998, pp. 75-83.

doi:10.1080/02664769823313

[8] S. K. Tse, C. Yang and H. K. Yuen, “Statistical Analysis

of Weibull Distributed Lifetime Data under Type-II Pro-

gressive Censoring with Binomial Removals,” Journal of

Applied Statistics, Vol. 27, No. 8, 2000, pp. 1033-1043.

doi:10.1080/02664760050173355

[9] W. Shuo-Jye and C. Chun-Tao, “Inference in the Pareto

Distribution Based on Progressive Type II Censoring with

Random Removals,” Journal of Applied Statistics, Vol.

30, No. 2, 2003, pp. 163-172.

doi:10.1080/0266476022000023721

[10] S. J. Wu, “Estimation for the Two-Parameter Pareto Dis-

tribution under Progressive Censoring with Uniform Re-

movals,” Journal of Statistical Computation and Simula-

tion, Vol. 73, No. 2, 2003, pp. 125-134.

doi:10.1080/00949650215732

[11] S. J. Wu, Y. J. Chen and C. T. Chang, “Statistical Infer-

ence Based on Progressively Censored Samples with

Random Removals from the Burr Type XII Distribution,”

Journal of Statistical Computation and Simulation, Vol.

77, No. 1, 2007, pp. 19-27.

doi:10.1080/10629360600569204

[12] A. C. Cohen, “Progressively Censored Samples in the

Life Testing,” Technometrics, Vol. 5, 1963, pp. 327-339.

doi:10.1080/00401706.1963.10490102

[13] R. G. Miller Jr., G. Gong and A. Munoz, “Survival A nal y-

sis,” John Wiley and Sons, New York, 1981.