### Paper Menu >>

### Journal Menu >>

Psychology 2012. Vol.3, No.10, 906-911 Published Online October 2012 in SciRes (http://www.SciRP.org/journal/psych) http://dx.doi.org/10.4236/psych.2012.310136 Copyright © 2012 SciRes. 906 Adaptation of Lesson Study and Open Approach for Sustainable Development of Students’ Mathematical Learning Process Sampan Thinwiangthong1, Maitree Inprasitha2, Suladda Loipha3 1Faculty of Education, K ho n K a e n U n iv e rsity, Khon Kaen, Thailand 2Center for Research in Mathematics Education, Khon Kaen University, Khon Kaen, Thailand 3Centre of Excellence in Ma t hematics, The Office of Higher Education Commission, Bangkok, Thailand Email: sampan@kku.ac.th Received July 7th, 2012; revised August 8th, 2012; accepted September 6th, 2012 This research was aimed to analyze and develop Small-group Mathematical Communication (SMC) as Mathematical Learning Process (MLP) of the seventh grade students in Ban-beung-neam-beung-krai- noon school for the school year 2008-2010 by adapting the Lesson Study and Open Approach which were innovations from Japan in order to be a context as well as guidelines for practice enhancing the students’ MLP. The teaching experiment (Steffe & Thomson, 2000) as a research methodology was used in de- signing the lesson plan, and studying students’ MLP. The data were collected by using the video-audio recordings in classroom activities, video-stimulated interviewing the students, and interviewing the teacher. Data were also analyzed utilizing a video and protocol analysis. The research findings found that the students had SMC in mathematics classroom adapting Lesson Study and Open Approach. The stu- dents learned mathematics more meaningfully by themselves based on sharing mathematical ideas in or- der to create the shared meaning and leading to shared goal. They participated in SMC regularly. As a re- sult, they developed a “habit of mind” which was led to a sustainable Mathematical Learning Process. Keywords: Lesson Study; Open Approach; Mathematical Learning Process; Small-Group Mathematical Communication; Triad Feedback Introduction The major point of education is learning reform (Wasee, 2000). After the announcement of National Education Act 1999, the learning process was focused in Basic Education Curricu- lum 2001. However, the outcome of education reform from the first round in a previous decade did not show the emphasis of the learning in the classroom. Besides, the international study outcome-TIMSS (1999, 2003) and PISA (2003, 2006), found that Thai students had lower average score in every mathemat- ics content than every national students’ total average scores. Moreover, the findings of evaluation in the National Educa- tional Quality by the Office of Standard Accreditation and Educational Quality Assessment (OSE) (second round during 2006-2010), found that most of the students could not reach the standard level in analytical thinking, synthetic thinking, and self-studying. Inprasitha (2006) stated that although there was an attempt of educational reform, most teachers still used the traditional way of teaching style focusing on the content with- out emphasizing on the students’ MLP. Fernandez, Cannon, & Chokshi (2003) suggested that the teachers needed to learn how to understand their students’ MLP. The teacher, who under- stands his students’ learning process, would have useful infor- mation in planning his lesson. Helping mathematics teachers to understand their students’ MLP was based on an innovation for changing the traditional classroom into the classroom focusing on MLP and we need framework for understanding the stu- dents’ MLP. The Center for Research in Mathematics Education (CRME) has adapted both the Lesson Study and Open Approach from Japan in the mathematics classroom of Thailand since 2002 (Inprasitha, 2007). The Lesson Study (jugyou-kenkyu) came to be known around the world as a uniquely Japanese method of lesson improvement which is designed to facilitate the devel- opment of high quality lessons (Isoda, Stephen, Ohara, & Mi- yakawa, 2007). The new approach of teaching professional development for enhancing the MLP was based on Lesson Study integrating an Open Approach (Loipha & Inprasitha, 2004). In mathematics classroom using the Open Approach, the students’ various ideas and thoughts would be discussed and developed mathematically through sophistication by their peer group and appropriate advice by the teacher. Thus, for the Open Approach, the class would share their common interest with the class which emphasizes mathematical discussion and commu- nication (Nohda, 2000). Mathematical communication was the students’ important MLP (Emori, 2005), especially, students’ mathematical communication in small group working. However, most of the Thai mathematics teachers were not able to under- stand their students’ SMC since the traditional classroom did not encourage students to express their thinking and feeling. Moreover, mathematics teachers did not know how to analyze SMC in classroom. Those problem issues prompted the re- searchers in determining the following research questions: how can we develop SMC as the students’ sustainable MLP? And how can we analyze the students’ SMC? The Application of Lesson Study and Open Approach in the Mathematics Classroom of Thailand Lesson Study is a cycle in which teachers work together to consider their long-term goals for students, bring those goals S. THINWIANGTHONG ET AL. into life in actual “research lesson,” and collaboratively observe, discuss, and refine the lessons (Lewis, 2002). Lesson Study was a teaching professional development which has been improved and used in Japan for 130 years (Shimizu, 2006). It was devel- oped and applied in teaching professional development in many countries around the world, and being recognized as the most efficient technique to improve and develop the mathematics teaching. Furthermore, it was also a technique in developing the sustainable improvement of teaching (Lewis & Perry, 2003). There were 8 steps of Lesson Study. These include: 1) Problem identification; 2) Class planning; 3) Class implementation; 4) Class evaluation and review of results; 5) Reconsideration of class; 6) Implementation of class based on reconsiderations; 7) Evaluation and review; and 8) Sharing of results (Stigler & Hiebert, 1999 cited in Baba, 2007). Loipha & Inprasitha (2004) proposed that the Lesson Study was prominent including continuous and regular development focusing on classroom changes. According to this characteristic, some kinds of innovations to make changes were needed. These were carried-out by integrating into the topic to be developed continuously which was the approach of mathematics teaching model focusing on Open Approach. Therefore, new method of teaching professional development for enhancing the mathe- matics learning, was needed to be based on the approach of teaching improvement and development according to the steps of Lesson Study as development of teachers’ collaboration in working by integrating into mathematics teaching model fo- cusing on Open Approach which was teaching professional development in classroom level. After Assistant Professor Dr. Maitree Inprasitha modified the Lesson Study in context of Thai class since 2002 until the pre- sent, there were 3 major phases of the modified Lesson Study. These in include: 1) Collaboratively Plan; 2) Collaboratively Do; and 3) Collaboratively See by integrating it with the Open Approach in order to implement every week in school (Inpra- sitha, 2008) as shown in Figure 1. Figure 1 shows the integration of Lesson Study and Open Approach (Inprasitha, 2008) focus on development of students’ mathematical thinking. The Open Approach included both the major matter for considering in each phase of Lesson Study, and teaching approach used by teacher in classroom teaching. As a teaching approach, it included 4 steps: These were: 1) Pose the open-ended problem; 2) Students’ learning by them- Figure 1. The integration of lesson study and open approach. selves; 3) Whole class di scussion; and 4 ) Summary through c on- nection. Nohda (1993 cited in Inprasitha, 2004) stated that in mathematics classroom using Open Approach, the students’ various ideas and thoughts would be discussed through sophis- tication by their peer group. Thus, for the mathematics class- room using Open Approach, it emphasizes mathematical dis- cussion and communication. According to the above mentioned, it leads to the first hy- pothesis that the integration of the Lesson Study and Open Ap- proach in mathematics classroom could help the students to perform mathematical communication which is very important MLP, especially, the SMC. The students would obtain opportu- nity in creating the mathematical knowledge through SMC. Small-Group Mathematical Communication as Mathematical Learning Process Communication could be classified into educational system since the education was based on communication (Sierpinska, 1998; Emori, 2005). The students’ mathematics learning based on mathematical communication included 3 characteristics which are as follows: Rigorousness, Economy, and Freedom in communicating the participants’ thinking (Emori, 2005). These 3 characteristics determined “Mathematical”, in “Mathematical Communication” which included opportunity that will occur during small group discussion. Small group discussion is a communication among limited number of people in a place in order to accomplish Shared Goal of small group communication, Shared Meaning leading to Shared Goal as a factor classifying the group from gathering each person together, and the small group discussion from gen- eral conversation (Samovar, Henman, & King, 1996). Shared Goal and Shared Meaning were important aspects of learning process of small group members. The good lesson was developed based on students’ natural thinking and feeling. We needed to know how the students think and feel in learning mathematics, emotional aspects should be focused on as well (Emori, 2005). However, the for- mer studies of Mathematical Communication including Emori’s (1993, 1997, 2005) findings, only cognitive aspect was studied. So, this study added the emotional aspect in SMC. Inprasitha (2001) developed theoretical framework of stu- dents’ emotional experience in mathematical problem solving, and explained emotional experience that: when human beings were facing the interruption, the findings of interruption was to stimulate physical arousal, and cognitive evaluation. We would use cognitive evaluation (such as cognitive evaluative schema) to make sense of interruption. The findings of cognitive evalua- tion would occur as different kinds of emotion such as surprise, confusion, enjoyment, or other kinds of emotion. For this study, the theoretical framework of Emori (2005), Samovar et al. (1996) and Inprasitha (2001) were used in de- fining the SMC that: It was the students’ conversation, discus- sion, argument including rigorousness, economy, and freedom of thought while they were working in small group in which they had their shared goal as well as shared meaning during solving mathematical problems together. Consequently, they changed their schema, and had emotional experience. The unit of analysis of SMC developed by the researcher called Triad Feedback (Thinwiangthong, Loipha, & Pasjuso, 2010; Thin- wiangthong, 2011) was as follows: According to Figure 2, whene sender sent message 1 by th Copyright © 2012 SciRes. 907 S. THINWIANGTHONG ET AL. Copyright © 2012 SciRes. 908 Figure 2. Triad feedback: the unit of analysis of SMC. conversation or facial expression, it is the evidences that the sender had Activated Schema 1 (AS1). The receiver received message 1, and sent message 2 as feedback, and stimulus stimu- lating the sender’s AS1. So, the sender met the Interruption (I), and needed Cognitive Evaluative Schema (CES) in order to make sense for that Interruption. Then, the sender adjusted their mathematical idea or schema until it became the Activated Schema 2 (AS2) and expressing the Emotional Experience (EE). This hypothetical model leads to the second hypothesis that Triad Feedback can be use to analyze both cognitive and emotional aspects in SMC. Research Objectives 1) To develop the Seventh Grade Students’ Small-group Mathematical Communication as Mathematical Learning Proc- ess in the Classroom using Lesson Study and Open Approach. 2) To analyze the Small-group Mathematical Communi c ation of the seventh grade students in classroom using Lesson Study and Open Approach. Method This research study was conducted under the project for pro- fessional development of mathematics teachers through Lesson Study and Open Approach which has been implemented by CRME, Faculty of Education, Khon Kaen University since 2006. This study was conducted during 2009-2011. The teach- ing experiment based on Steffe & Thomson’ (2000) approach was used for designing the research method including the fol- lowing details: Participants The participants were 8 seventh-grade students studying in Ban-beung-neam-beung-krai-noon school. Their age ranged from 12 - 13 years old. They are familiar with mathematics classroom adapting Lesson Study and Open Approach. They voluntarily participated in this study. Procedure Document Analysis The researcher analyzed documents, research studies, and related theoretical framework of SMC including: Emori’s (1993, 1997, 2005) theoretical framework of Mathematical Commu- nication, Samovar et al. (1996) theoretical framework of Small Group Communication, and Inprasitha’s (2001) theoretical framework of Emotional Experience in order to synthesize theoretical framework of SMC in classroom using Lesson Study and Open App r o ach. Participatory Observation The researcher participated as a member in Lesson Study team in conducting collaboratively plan, do, and see: to wit: 1) Collaboratively Plan, implemented every Tuesday Eve- ning. The member team of Lesson Study including the teacher, participatory teacher, internship student, researcher, co-re- searcher, school coordinator, under monitoring and taking care of the director as well as experts of CRME, collaborated in developing the open-ended problems, designing the material and equipment, anticipating the students’ mathematical ideas as well as response toward the open-ended problem, and under- standing the students’ SMC. In this step, the members’ conver- sations were recorded using audio tape recorder. 2) Collaboratively Do, implemented during mathematics class organized by school in each week. The teacher imple- mented lesson plan in the classroom. Teaching was observed by the members of Lesson Study team. The objective of observa- tion was to know the students’ responses on the open-ended problem, SMC, the students’ changes in mathematical ideas, and their emotional expression. In this step, the observer would take field note to record what were observed in the classroom. The classroom activities were recorded using a video tape re- corder. 3) Collaboratively See, implemented in every Thursday evening. Every group member discussed the outcomes of teaching observation in different aspects including: the stu- dents’ responses on open-ended problem, mathematical ideas, SMC, changes of mathematical ideas, and students’ emotional expression. The sequence of reflection included: the teacher, internship students, participatory teacher, co-researcher, re- searcher, school coordinator, and experts of CRME. The object- tive of discussion was to improve the lessons. The members’ conversation was recorded using an audio tape recorder. Video-Stimulated Interview After class, the researcher concluded the field note into is- sues regarding to SMC occurring in class, and studied the classroom video-tape to prepare the students’ interview topics. For students’ interview, the researcher turned on classroom video-tape for students to stimulate them to think back while they were participating in learning activities in class focusing on interviewing the SMC especially the students’ thought and feeling occurring while they were performing SMC. S. THINWIANGTHONG ET AL. Teacher and Participatory Teacher Interview After completing the data collection of every lesson, the re- searcher interviewed teacher and participatory teacher including interview issues as: What do the classroom adapting Lesson Study and Open Approach, focus on or give value on? Are the students learning through classroom adapting Lesson Study and Open Approach, the same or different from students in tradi- tional classroom? What does sustainable learning process mean? Does the classroom adapting Lesson Study and Open Approach able to develop the students’ sustainable learning process? How? Video Analysis The researcher carefully analyzed video-tape by focusing on students’ SMC. The students’ thinking and feeling were satis- factory while they were participating in SMC by considering the occurrence regularly. Then, the hypothetical model was constructed to further explain the SMC. The researcher studied related theories and connected the theories with phenomenon in practice occurring in the classroom. As a result, the researcher understood both the components and process of students’ SMC. Then, the researcher synthesized them as theoretical framework used to further study the SMC. Verification of Theoretical Framework The researcher investigated theoretical framework by col- lecting supplementary data of SMC, and using the synthetic theoretical framework in analyzing it to assure that it would be practical and more reliable. Instruments Instruments used to collect data were field note, video- and audio recorders. They were used for recording the activities in participatory observation (collaboratively plan, do, see), and interview sessions. Instrument used to analyze cognitive and emotional aspects in SMC, was the Triad Feedback-hypothetic- cal model of SMC. Data Analysis For data analysis, video-tape was analyzed and written in analytic description to reveal details of the SMC. The re- searcher would like to show the samples of data analysis in order to reveal the details of SMC. These were as follows: Topic: Relationship of tw o-dimensiona l geometry, and three-dimensional one. Title: Magic Cube Date and Pl a ce: 5th January 2011, 12:30-13:30 p.m. 7-grade Class. Problem Situation: Let th e students imagine that if t he cube was cut and folded it into a flat figure a s only one shee t . How many times do you need to cut it? And wha t figure it woul d be? Write figure as your imagination as much as possible. Item 1St1It’s easy, five cut five times, is that right? Cut here Message 1 Item 2St2(Show him works heet drawing the f igure to St1) Item 3St1 (Look at a figure drawn by St2, consider it, and count the cut edges) One, two, thre e. Folded into this figure. Item 4St2 Is this figure r ight? (Pointing at one’s own figure. ) Message 2 Item 5St1Wait, wait, wait. Item 6St3(Looking at figure pointed by St1) Is it right? Item 7St2Don’t argue m e. Item 8St1One, two, three, four, five, six (try to think) Item 9St3Seven (Looking at St1’s face) Cognitive Evaluation of Interruption in St1’s Mental Space Item 10St1Hey! Seven times. Message 3 St 2 St 1 St 2 St 1 St 2 St 1 Figure 3. The students’ SMC while solving problem on magic cube. The analysis of video as the above, was based on framework of Triad Feedback. St1’ statement in Item 1 that “It’s easy, five cut five times, is that right? Cut here.” Could help the other students to understand that St1 cut the cube for five times as St1’s intention. But, St2 wasn’t certain. So, he handed in his worksheet written flat figure (see figure in protocol Item 4) for St1 to look at, and asked St1 in Item 4 that “Is this figure right?” St2’ actions in handing in the worksheet including flat figure as well as asking, were messages turning back to St1. Then, St1 found different idea, and reviewed her own idea. St1 tried to think until she had her new mathematical idea which she never had this idea before. She spoke Item 10 that “Hey! Seven times”. According to this communication, St1 and other students of this group, could be able to communicate as their intention by using concise message. In addition, it could help St1 to have new mathematical idea. The communication in this scene consisted of rigorousness, economy, and freedom in thinking of those who participated in communication. Considering the goals of St1 and other students in the group, found that everyone had one’s goal in finding the number of times for cutting the cube edges, which was a shared goal of St1 and other students. To accomplish the shared goal, St1 and other students in group communicated with each other until the shared meaning regarding to how many times one would cut the cube edges, was shown. In Item 1-4, other students had shared meaning with St1 that: one would cut the cube edges for 5 times. But, after St1 tried to think until she had new idea that: one needed to cut the cube edges for 7 times. The other students could understand that: how many times to cut the cube edges, were 7 times. After teacher pose open-ended problem on the board, and distributed single work sheet for students. The student read wo rk- sheet, and tried to think how many times they had to cut the edge of a cube. The teacher allows each student think about 5 minutes. Then, the students could speak with their nearby fr iend as following protocol which according to Figure 3 (St1: the first Student; St2: the Second Student; St3: the Third Student). St1 presented his idea in Item 1 that: “It’s easy, five cut five times, is that right? Cut here”, could be analyzed that St1 had Copyright © 2012 SciRes. 909 S. THINWIANGTHONG ET AL. Copyright © 2012 SciRes. 910 schema in cutting the cube edges for 5 times, the flat figure (AS1) as a sheet was occurred. Then, St2 handed in his own figure of how to cut the cube for St1 to see, and asked in Item 4 that: Is this figure right? St2’ actions in handing in the work- sheet including figure how to cut the cube as well as asking in Item 4, were message 2 stimulating AS1. As a result, St1 met interruption (I) by saying that “Wait, wait, wait.” St1 tried to think about her own idea which was duration St1 had cognitive evaluation by using cognitive evaluative schema (CES) to in- terpret the interruption. St1 considered the correctness as well as logic of the figure, and the number of cutting. The cognitive evaluation occurred in St1’s mental space. Then, St1’ schema was changed. Since St1 spoke with exciting voice in Item 10 that: “Hey! Seven times.” When St1 said in Item 10, it was message 3 which could be analyzed to show St1’s changed schema: the schema in cutting the cube for 7 times, the flat one as only one sheet (AS2). In addition, St1 also expressed his emotional experience (EE) as the surprise, and excitement. The Findings from Interviewing the Teacher and Participat o ry Teacher The researcher interviewed teacher and participatory teacher regarding to students’ sustainable learning process. The find- ings of interview were as follows: From the Table 1, both the teacher, and participatory teacher revealed that a class using Lesson Study and Open Approach focusing on students’ learning process, could help them think variously, feel more expressively, discuss and shar e their ideas, and perform SMC regularly. Consequently, this kind of class- room setting could be able to develop the students’ habit of mind in solving the problems and sustainable learning process. Discussions Mathematics classroom adapting Lesson Study and Open Approach was the problem solving classroom (Isoda et al., 2007). This new kind of classroom served to the expectation of educational reform in Thailand. Moreover, problem solving classroom was required in many countries around the world. Because it cultivated the quality citizens in the countries. This study showed some success in improving the traditional class- room to be the problem solving classroom. This study incorporated emotional aspect into mathematical communication, especially, SMC. According to Hannula et al. (2004) stated that one important problem in the recent research on affect is the understanding of the interaction between affect and cognition. This study provided the teachers and research- ers’ intensive understanding of affect and cognition in SMC of students. However, Immordino-Yang (2011) suggested that cognitive, affective and social neuroscience have the potential to revolutionize educational theories of learning. This study does not incorporate neuroscience in the framework of SMC. It should be more recognized in the SMC future study. Conclusion According to the question: How can we develop SMC as the students’ sustainable MLP? The research findings found that mathematics classroom adapting the Lesson Study and Open Approach, could develop the students’ SMC. Since the students had opportunities to collaborate in solving the open-ended problem regularly, the students practiced thinking in problem solving through various solutions. They learned mathematics meaningfully by themselves based on sharing of mathematical ideas in order to create the shared meaning leading to the ac- complishments of shared goals. As they perform SMC, they develop the “habit of mind” which lead to a sustainable Mathematical Learning Process. According to the question that How can we analyze the stu- dents’ SMC? The research findings found that the theoretical Table 1. The fidings from interviewing the teacher and particip ato ry teacher. Teacher’s answers Participatory teacher’s answers Questions 1) What does the teacher who used Lesson Study and Open Approach focus on or value? I focused on students t o h ave first-hand experience, r eal experiment and practice, self-learning, and present their ideas. Students have different ideas. They are proud they think differently from thei r friends. The class provides more freedom to solve problems. Questions 2) D o the students in classroom who adapt the Lesson Study and Open Approach, the same or different from the other s tudents in traditional classroom? How? The similar issue is: those w ho want to learn and know, c ould be able to learn similarly both in the c l assroom adapting Lesson S tudy and Open Approach, and in the traditiona l classroom. The different issue is: st udents in the classroom adapting Lesson St udy and Open Approach, are more expressive, better performance in the presentation. T hey discuss on solving problem with their friends whil e in the traditional classroom, the students ask their teacher only. Classroom using these innovations, students could sh ow diverge nt thinking, solve problems by various solutions, and present thei r own thinking. In traditional classroom, students have convergen t thinking or one solution only . Questions 3) What does sustaina ble learning process mean? The students c ould apply knowledge or learned techniques in other situations. They are able to apply and expand it further. They could learn every place for the rest of their lives. They could solve problems by themselves without place or time limitation. They could apply it. Questions 4) Could the classroom applying of Lesson Stu dy and Open Approach, develop the students to have sustainable learning process? How? I think it does . But, it isn’t quick. It depends on how muc h patience the teacher has. We focus on process rather than product. We provide instruments f or students so that they would be able to apply those lat er. I think it does. Since it causes students to think differently and variously until they could apply to solve problems in different situations. This kind of classroom could develop sustainable learning process. S. THINWIANGTHONG ET AL. framework called Triad Feedback, synthesized by the re- searcher, could be used to analyze the students’ SMC. It re- vealed the characteristics of Mathematical Communication, cognitive aspects as well as emotional aspects of SMC. This analysis aimed to understand the students’ MLP so that the teachers or researcher would be able to utilize the students’ thinking and feeling towards the lesson. Acknowledgements This research is (partially) supported by the Centre of Excel- lent in Mathematics, the Commission on Higher Education, Thailand, and Center for Research in Mathematics Education, Khon Kaen University, Thailand. REFERENCES Baba, T. (2007). How is lesson study implemented? In M. Isoda, M. Stephen, Y. Ohara, & T. Miyakawa (Eds.), Japanese Lesson Study in Mathematics: Its Impact, Diversity and Potential for Educational Improvement (pp. 2-7). Singapore City: World Scientific Publishing Company. Emori, H. (1993). The mechanism of communication in learning mathematics. In I. Hirabayashi, N. Nohda, K. Shigematsu, & F.-L. Lin (Eds.), Proceedings of the 17th PME Conference (Vol. 2, pp. 230-237). Tsukuba: University of Tsukuba. Emori, H. (1997). Mathematics communication. In T. Katsuro (Ed.), Rethinking Lesson Organization in School Mathematics (pp. 44-60). Japan: Japan Society of Mathematics Education. Emori, H. (2005). The workshop for Young Mathematics Educations in Thailand 2005 building up the research agenda for the next 10 year, 2006-2015. Khon Kean: Khon Kean University. Fernandez, C., Cannon, J., & Chokshi, S. (2003). A US-Japan lesson study collaboration reveals critical lenses for examining practice. Teaching and Teacher Education, 19, 171-185. doi:10.1016/S0742-051X(02)00102-6 Hannula, M., Evans, J., Philippou, G., & Zan, R. (2004). Affect in mathematics education-exploring theoretical frameworks. In M. J. Hines, & A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Edu- cation (pp. 107-136). Bergen: Bergen University College . Immordino-Yang, M. H. (2011). Implication of affective and social neuroscience for educational theory. Educational Philosophy and Theory, 43, 98-103. doi:10.1111/j.1469-5812.2010.00713.x Inprasitha, M. (2001). Emotional experience of students in mathemati- cal problem solving. Doctoral Dissertation, Tsukuba: University of Tsukuba. Inprasitha, M. (2003). Teaching by using open approach in mathemat- ics classroom of Japan. KKU Journal of Mathematics Education, 1, 1-17. Inprasitha, M. (2006). Open-ended approach and teacher education. Tsukuba Journal of Educational Study in Mathematics, 25, 169-178. Inprasitha, M. (2007). Lesson study in Thailand. In M. Isoda, M. Stephens, Y. Ohara, & T. Miyakawa (Eds.), Japanese Lesson Study in Mathematics: Its Impact, Diversity and Potential for Educational Improvement (pp. 188-193). Singapore City: World Scientific Pub- lishing Company. Inprasitha, M. (2008). A research report titled “model of students” mathematical thinking development by lesson study and open ap- proach. Khon Kaen: Center for R e s e arch I Mathematics Education. Isoda, M., Stephen, M. Ohara, Y., & Miyakawa, T. (2007). Japanese lesson study in mathematics: Its impact, diversity and potential for educational improvement. Singapore City: World Scientific Publish- ing Company. Lewis, C. (2002). Lesson study: A handbook of teacher-led instruc- tional change. Philadelphia, PA: Research for Better Schools. Lewis, C., & Perry, R. (2003). Lesson study and teachers knowledge development: Collaborative critique of a research model and meth- ods. Annual Meeting of the American Educational Research Associa- tion 2003. Chicago: AERA. Loipha, S., & Inprasitha, M. (2004). Development of new teaching profession for enhancing mathematical learning. KKU Journal of Mathematics Education, 1, 18-28. Nohda, N. (2000). Teaching by open-approach method in Japanese mathematics classroom. In T. Nakahara, & M. Koyama (Eds.), Pro- ceedings 24th of the Conference of the International Group for the Psychology of Mathematics Educ a t io n , 1, 39-53. OECD (2004), Learning for tomorrows world—First results from PISA 2003. Paris: OECD Pub lication. Samovar, L. A., Henman, L. D., & King, S. W. (1996). Small group process. In R. S. Cathcart, L. A. Samovarm, & L. D. Henman (Eds.), Small Group Communication: Theory & Practice. Dubuque: Times Mirror Higher Education Group. Shimizu, S. (2006). Professional development through lesson study: A Japanese case. APEC International and Learning Mathematics through Lesson Study, Khon Kaen. Sierpinska, A. (1998). Three epistemologies, three views of classroom communication: Constructivism, sociocultural approaches, interac- tionism. In H. Steinbring, A. Sierpinska, & M. G. Bartolini-Bussi. (Eds.), Language and Communication in the Mathematics Classroom (pp. 30-62). Reston, VA: NCTM. Steffe, L. P., & Thomson, P. W. (2000). Teaching experiment method- ology: Underlying principles and essential elements. Mahwah, NJ: Lawrence Erlbaum Associates. Stigler, J., & Hiebert, J. (1999). The teaching gap—Best ideas from the world’s teachers for improving education in the classroom. New York: The Free Press. Thailand PISA Project, Institute for Promoting the Mathematics and Technology Teaching (2010). The findings of PISA 2009 evaluation, reading, mathematics, and science: Conclusions for administration. Bangkok: Aroon Printing. Thinwiangthong, S., Loipha, S., & Pasjuso, S. (2010). Triad feedback: Unit of analysis of small-group mathematical communication to un- derstand mathematical learning process. In Y. Shimizu, Y. Sekiguchi, & K. Hino (Eds.), Proceeding of the 5th East Asia Regional Confer- ence on Mathematics Education . Tokyo: Inam oto Printing. Thinwiangthong, S. (2011). Verification of triad feedback—The unit of analysis of small-group mathematical communication. In B. Ubuz (Ed.), Proceeding of the 35th International Conference on Psychol- ogy of Mathematics Education, Ankara. Wasee, P. (2000). Learning reform: The Students are the most impor- tant. Bangkok: The Offi ce o f N at io n a l Education Commission. Copyright © 2012 SciRes. 911 |